# Multimodal Content Source: https://moxn.mintlify.app/advanced/multimodal Work with images and documents in prompts Moxn supports multimodal prompts with images, PDFs, and other files. This guide covers how to include and handle multimodal content. ## Supported Content Types | Type | Providers | Use Cases | | ---------- | ----------------- | ----------------------------- | | **Images** | All | Charts, screenshots, diagrams | | **PDFs** | Anthropic, Google | Documents, reports | | **Files** | Varies | Various document types | ## Images in Messages ### In the Web App Add images to messages: 1. Click the image icon in the editor 2. Upload an image or paste a URL 3. Add alt text for accessibility ### In Code Images appear as content blocks: ```python theme={null} # When you fetch a prompt with images prompt = await client.get_prompt("...", branch_name="main") for message in prompt.messages: for block_group in message.blocks: for block in block_group: if block.block_type == "image_from_source": print(f"Image: {block.url}") print(f"Alt: {block.alt}") ``` ### Provider Conversion Images are automatically converted to provider format: ```python theme={null} # Anthropic format (base64) { "type": "image", "source": { "type": "base64", "media_type": "image/png", "data": "iVBORw0KGgo..." } } # OpenAI format (data URI) { "type": "image_url", "image_url": { "url": "..." } } # Google format (Part with blob) Part(inline_data=Blob( mime_type="image/png", data=bytes(...) )) ``` ## PDFs in Messages ### Adding PDFs In the web app: 1. Click the file icon 2. Upload a PDF 3. It appears inline in the message ### PDF Block Types Like images, PDFs use `PDFContentFromSource`—a discriminated union. You can pass a dict or explicit type: ```python theme={null} pdf = { "type": "url", "url": "https://example.com/document.pdf", "media_type": "application/pdf", "filename": "document.pdf" } ``` ```python theme={null} from moxn.base_models.blocks.file import MediaDataPDFFromURL pdf = MediaDataPDFFromURL( url="https://example.com/document.pdf", media_type="application/pdf", filename="document.pdf" ) ``` ### PDF Types | `type` value | Class | Required Fields | | -------------- | --------------------------- | ------------------------------------ | | `"url"` | `MediaDataPDFFromURL` | `url`, `media_type`, `filename` | | `"base64"` | `MediaDataPDFFromBase64` | `base64`, `media_type`, `filename` | | `"bytes"` | `MediaDataPDFFromBytes` | `bytes`, `media_type`, `filename` | | `"local_file"` | `MediaDataPDFFromLocalFile` | `filepath`, `media_type`, `filename` | ## Signed URLs For content stored in cloud storage (S3, GCS, etc.), Moxn uses signed URLs with automatic refresh. ### How It Works ``` 1. You upload content → stored in cloud storage 2. Prompt fetched → signed URLs generated (short expiry) 3. SDK registers content → tracks expiration 4. Before expiry → auto-refreshes URLs 5. Provider conversion → fresh URLs used ``` ### Automatic Refresh The SDK handles refresh automatically: ```python theme={null} async with MoxnClient() as client: # Signed URLs are registered when fetching prompt = await client.get_prompt("...", branch_name="main") # Later, when converting (URLs refreshed if needed) session = PromptSession.from_prompt_template(prompt, session_data) payload = session.to_anthropic_invocation() # ^ URLs are fresh at this point ``` ### Manual Registration For prompts with signed content: ```python theme={null} # Already handled by get_prompt(), but if you need manual control: for message in prompt.messages: for block_group in message.blocks: for block in block_group: if isinstance(block, SignedURLContent): await client.content_client.register_content(block) ``` ## Image Variables Use variables for dynamic images: ### In the Web App 1. Insert a variable with type "image" 2. At runtime, provide the image object ### In Code Image variables use `ImageContentFromSource`, a **discriminated union** type. The SDK automatically dispatches to the correct image type based on the `type` field. ```python theme={null} from moxn.base_models.blocks.image import ImageContentFromSource from moxn.types.base import RenderableModel class ImageAnalysisInput(RenderableModel): query: str screenshot: ImageContentFromSource def render(self, **kwargs) -> dict: return { "query": self.query, "screenshot": self.screenshot, # Returns the image object directly } ``` ### Constructing Images You can provide images in two ways: Pass a dict with the right structure—no extra imports needed: ```python theme={null} # From URL image = { "type": "url", "url": "https://example.com/screenshot.png", "media_type": "image/png" } # From base64 image = { "type": "base64", "base64": "iVBORw0KGgo...", "media_type": "image/png" } session_data = ImageAnalysisInput( query="What's in this image?", screenshot=image ) ``` Import and use the specific type for better IDE support: ```python theme={null} from moxn.base_models.blocks.image import MediaImageFromURL image = MediaImageFromURL( url="https://example.com/screenshot.png", media_type="image/png" ) session_data = ImageAnalysisInput( query="What's in this image?", screenshot=image ) ``` Both approaches are equivalent—the dict is validated and converted using Pydantic's discriminated union dispatch. ### Image Types | `type` value | Class | Required Fields | | -------------- | ------------------------- | ------------------------ | | `"url"` | `MediaImageFromURL` | `url`, `media_type` | | `"base64"` | `MediaImageFromBase64` | `base64`, `media_type` | | `"bytes"` | `MediaImageFromBytes` | `bytes`, `media_type` | | `"local_file"` | `MediaImageFromLocalFile` | `filepath`, `media_type` | Supported `media_type` values: `"image/jpeg"`, `"image/png"`, `"image/gif"`, `"image/webp"` ## Provider-Specific Handling Moxn supports multiple provider APIs, each with different multimodal capabilities: ### Anthropic ```python theme={null} session.to_anthropic_invocation() ``` * Images: PNG, JPEG, GIF, WebP * PDFs: Native support with citations ### OpenAI OpenAI has two distinct APIs with different invocation methods: ```python theme={null} # Chat Completions API session.to_openai_chat_invocation() # Responses API (different format) session.to_openai_responses_invocation() ``` * Images: Via data URIs or URLs * PDFs: Limited support ### Google Google has two distinct APIs: ```python theme={null} # Gemini Developer API session.to_google_gemini_invocation() # Vertex AI (different authentication and endpoints) session.to_google_vertex_invocation() ``` * Images: Various formats * PDFs: Native support * Note: Vertex AI requires GCS URIs (`gs://`) for remote files—public HTTP URLs are not supported ## Error Handling Handle multimodal-specific errors: ```python theme={null} try: response = anthropic.messages.create( **session.to_anthropic_invocation() ) except anthropic.BadRequestError as e: if "image" in str(e).lower(): # Image format or size issue print(f"Image error: {e}") raise ``` ## Complete Example ```python theme={null} from moxn import MoxnClient from moxn.types.content import Provider from moxn.base_models.blocks.image import ImageContentFromSource from moxn.types.base import RenderableModel from anthropic import Anthropic class ImageAnalysisInput(RenderableModel): """Input with an image for analysis.""" screenshot: ImageContentFromSource question: str def render(self, **kwargs) -> dict: return { "screenshot": self.screenshot, "question": self.question, } async def analyze_screenshot(image_url: str, question: str): async with MoxnClient() as client: # Construct image using dict literal (or use explicit MediaImageFromURL) image = {"type": "url", "url": image_url, "media_type": "image/png"} session = await client.create_prompt_session( prompt_id="image-analysis-prompt", session_data=ImageAnalysisInput( screenshot=image, question=question ) ) async with client.span( session, name="analyze_image", metadata={"has_image": True} ) as span: anthropic = Anthropic() response = anthropic.messages.create( **session.to_anthropic_invocation() ) await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) return response.content[0].text ``` ## Next Steps Parse structured responses Provider-specific handling Build a document analysis pipeline Log multimodal interactions # Structured Outputs Source: https://moxn.mintlify.app/advanced/structured-outputs Get JSON responses that conform to a schema Structured outputs let you get JSON responses that conform to a predefined schema. This guide covers how to configure and use structured outputs. ## What Are Structured Outputs? Instead of free-form text: ``` The sentiment is positive with high confidence. ``` Get structured JSON: ```json theme={null} { "sentiment": "positive", "confidence": 0.95, "keywords": ["happy", "satisfied", "great"] } ``` ## Setting Up Structured Outputs ### In the Web App Define the output structure in the Schemas section. Mark the schema as "Structured Output" (not "Tool"). Attach the schema to your prompt's structured output setting. ### Schema Example ```json theme={null} { "type": "object", "properties": { "sentiment": { "type": "string", "enum": ["positive", "negative", "neutral"] }, "confidence": { "type": "number", "minimum": 0, "maximum": 1 }, "keywords": { "type": "array", "items": {"type": "string"} }, "reasoning": { "type": "string" } }, "required": ["sentiment", "confidence"] } ``` ## Provider Support | Provider | Structured Output Support | | --------- | ------------------------- | | Anthropic | Yes (beta) | | OpenAI | Yes | | Google | Yes | ## Using in Code ### Basic Usage ```python theme={null} session = await client.create_prompt_session( prompt_id="sentiment-analysis-prompt", session_data=AnalysisInput(text="Great product!") ) # Structured output schema is included automatically response = anthropic.messages.create( **session.to_anthropic_invocation(), extra_headers={"anthropic-beta": "structured-outputs-2025-11-13"} ) ``` ### Parsing the Response ```python theme={null} import json from pydantic import BaseModel class SentimentResult(BaseModel): sentiment: str confidence: float keywords: list[str] = [] reasoning: str | None = None # Parse the response (uses stored provider from completion_config) parsed = session.parse_response(response) text_content = parsed.candidates[0].content[0].text # Validate with Pydantic result = SentimentResult.model_validate_json(text_content) print(f"Sentiment: {result.sentiment} ({result.confidence:.0%})") ``` ## Provider-Specific Handling ### Anthropic Requires beta header: ```python theme={null} response = anthropic.messages.create( **session.to_anthropic_invocation(), extra_headers={"anthropic-beta": "structured-outputs-2025-11-13"} ) ``` Generated payload includes: ```python theme={null} { "output_format": { "type": "json_schema", "json_schema": { "name": "SentimentResult", "schema": {...} } } } ``` ### OpenAI Works out of the box: ```python theme={null} response = openai.chat.completions.create( **session.to_openai_chat_invocation() ) ``` Generated payload includes: ```python theme={null} { "response_format": { "type": "json_schema", "json_schema": { "name": "SentimentResult", "schema": {...}, "strict": True } } } ``` ### Google ```python theme={null} response = client.models.generate_content( **session.to_google_gemini_invocation() ) ``` Generated config includes: ```python theme={null} { "config": { "response_schema": {...}, "response_mime_type": "application/json" } } ``` ## Validation Patterns ### Basic Validation ```python theme={null} from pydantic import ValidationError try: result = SentimentResult.model_validate_json(response_text) except ValidationError as e: print(f"Invalid response: {e}") ``` ### With Telemetry ```python theme={null} validation_errors = [] try: result = SentimentResult.model_validate_json(response_text) except ValidationError as e: validation_errors = [str(err) for err in e.errors()] result = None # Log with validation status event = session.create_llm_event_from_parsed_response( parsed_response=parsed, validation_errors=validation_errors or None ) await client.log_telemetry_event(event) ``` ### Retry on Failure ```python theme={null} async def analyze_with_retry(text: str, max_retries: int = 2): for attempt in range(max_retries + 1): response = await call_llm() parsed = session.parse_response(response) try: result = SentimentResult.model_validate_json( parsed.candidates[0].content[0].text ) return result except ValidationError as e: if attempt == max_retries: raise # Optionally: add error to context for next attempt ``` ## Schema Design Tips ### Use Enums for Categories ```json theme={null} { "category": { "type": "string", "enum": ["bug", "feature", "question", "other"] } } ``` ### Set Bounds for Numbers ```json theme={null} { "score": { "type": "number", "minimum": 0, "maximum": 10 } } ``` ### Use Required Fields ```json theme={null} { "required": ["category", "confidence"] } ``` ### Allow Additional Context Include a reasoning field for explainability: ```json theme={null} { "reasoning": { "type": "string", "description": "Explanation for the classification" } } ``` ## Tools vs Structured Outputs | Aspect | Tools (Function Calling) | Structured Outputs | | ---------------- | ------------------------- | ------------------ | | Use when | LLM decides to use a tool | Always want JSON | | Control | LLM chooses when | Guaranteed | | Response | May include tool calls | Pure JSON | | Multiple schemas | Yes (multiple tools) | One schema | **Use tools when:** The LLM should decide whether to call a function **Use structured output when:** You always want a specific JSON format ## Combining with Tools You can have both tools and structured output: * Tools for actions (search, calculate, etc.) * Structured output for the final response format ```python theme={null} # Prompt has both tools and structured output configured response = anthropic.messages.create( **session.to_anthropic_invocation(), extra_headers={"anthropic-beta": "structured-outputs-2025-11-13"} ) # Response may include tool calls followed by structured output for block in response.content: if block.type == "tool_use": # Handle tool call result = execute_tool(block.name, block.input) elif block.type == "text": # Parse structured output output = SentimentResult.model_validate_json(block.text) ``` ## Complete Example ```python theme={null} from moxn import MoxnClient from moxn.types.content import Provider from anthropic import Anthropic from pydantic import BaseModel, ValidationError class ExtractionResult(BaseModel): entities: list[str] summary: str category: str confidence: float async def extract_from_document(text: str): async with MoxnClient() as client: session = await client.create_prompt_session( prompt_id="extraction-prompt", session_data=ExtractionInput(document=text) ) async with client.span( session, name="extract_entities", metadata={"doc_length": len(text)} ) as span: anthropic = Anthropic() response = anthropic.messages.create( **session.to_anthropic_invocation(), extra_headers={"anthropic-beta": "structured-outputs-2025-11-13"} ) parsed = session.parse_response(response) # Validate structured output validation_errors = [] try: result = ExtractionResult.model_validate_json( parsed.candidates[0].content[0].text ) except ValidationError as e: validation_errors = [str(err) for err in e.errors()] result = None # Log with validation status in event attributes event = session.create_llm_event_from_parsed_response( parsed_response=parsed, validation_errors=validation_errors or None, attributes={ "extraction_success": result is not None, "entity_count": len(result.entities) if result else 0 } ) await client.log_telemetry_event(event) return result ``` ## Next Steps Complete extraction example Provider-specific details Generate models for outputs Log validation results # Entity Model Source: https://moxn.mintlify.app/concepts/entities Understanding Tasks, Prompts, Messages, and Schemas Moxn organizes content in a hierarchical structure designed for collaboration and reuse. This guide explains each entity type and how they relate. ## Entity Hierarchy ```mermaid theme={null} graph TD Task[Task - Repository] Task --> Prompts[Prompts - LLM Templates] Task --> Schemas[Schemas - Tool/Output Definitions] Task --> Version[Branches & Commits - Version Control] Prompts --> Messages[Messages - Content Blocks] Prompts --> InputSchema[Input Schema - Auto-generated] Messages --> Variables[Variables → Properties] Schemas --> Properties[Properties - Type Definitions] ``` ## Task A **Task** is the top-level container, analogous to a Git repository. It groups related prompts and provides version control boundaries. ```python theme={null} task = await client.get_task("task-id", branch_name="main") task.id # UUID - stable identifier task.name # str - e.g., "Customer Support Bot" task.description # str | None task.prompts # list[PromptTemplate] task.definitions # dict[str, SchemaDefinition] - all schemas task.branches # list[Branch] task.last_commit # Commit | None ``` **Use cases for Tasks:** * One task per AI feature (customer support, search, etc.) * One task per team or domain * One task per environment (if you prefer separate staging/production) ## Prompt A **Prompt** (or PromptTemplate) is a template for a single LLM invocation. It combines messages, an input schema, and optional tool definitions. ```python theme={null} prompt = await client.get_prompt("prompt-id", branch_name="main") prompt.id # UUID prompt.name # str - e.g., "Product Help" prompt.description # str | None prompt.task_id # UUID - parent task prompt.messages # list[Message] prompt.input_schema # Schema | None - auto-generated from variables prompt.tools # list[SdkTool] - function calling tools prompt.completion_config # CompletionConfig - model settings ``` ### Completion Config Each prompt can specify default model settings: ```python theme={null} prompt.completion_config.provider # Provider enum prompt.completion_config.model # str - e.g., "claude-sonnet-4-20250514" prompt.completion_config.max_tokens # int prompt.completion_config.temperature # float prompt.completion_config.tool_choice # str - "auto", "required", "none", or tool name ``` ### Tools Prompts can have tools for function calling or structured output: ```python theme={null} # Function calling tools prompt.function_tools # list[SdkTool] where tool_type == "tool" # Structured output schema prompt.structured_output_schema # SdkTool | None where tool_type == "structured_output" ``` ## Message A **Message** is a reusable content block with a specific role. Messages can be shared across multiple prompts. ```python theme={null} for message in prompt.messages: message.id # UUID message.name # str - e.g., "System Prompt" message.role # "system" | "user" | "assistant" message.author # "HUMAN" | "MACHINE" message.blocks # list[list[ContentBlock]] - 2D content message.task_id # UUID - parent task ``` ### Message Roles | Role | Description | | ----------- | ------------------------------------------------------------------------- | | `system` | Instructions for the LLM (converted to system param for Anthropic/Google) | | `user` | User input or context | | `assistant` | Assistant responses (for few-shot examples or prefilling) | ### Content Blocks Messages contain **blocks** in a 2D array structure: ```python theme={null} message.blocks # list[list[ContentBlock]] # Outer array: paragraphs or logical sections # Inner array: blocks within a paragraph ``` **Block types:** ```python theme={null} # Text TextContent(text="You are a helpful assistant.") # Variables (substituted at runtime) Variable( name="query", variable_type="primitive", # or "image", "file" format="inline", # or "block" description="The user's question", required=True ) # Images ImageContentFromSource(url="https://...", alt="description") SignedURLImageContent(signed_url="...", file_path="...", expiration=datetime) # PDFs PDFContentFromSource(url="https://...", name="document.pdf") SignedURLPDFContent(signed_url="...", file_path="...", expiration=datetime) # Tool interactions ToolCall(tool_name="search", tool_call_id="...", input={...}) ToolResult(tool_call_id="...", content="...") # Extended thinking ThinkingContent(text="Let me reason about this...") ReasoningContent(text="Step 1: ...") ``` ## Property A **Property** is a type definition that describes a variable. Properties define the shape of data that flows into prompts. Properties are composed into schemas and linked to variables in messages by name. **Property definition (JSON Schema):** ```json theme={null} { "type": "object", "properties": { "query": { "type": "string", "description": "The user's question" }, "context": { "type": "array", "items": { "type": "object", "properties": { "title": {"type": "string"}, "content": {"type": "string"} } } } }, "required": ["query"] } ``` **Supported types:** * Primitives: `string`, `number`, `integer`, `boolean` * Complex: `object`, `array` * Formats: `date`, `date-time`, `email`, `uri`, `uuid` ## Schema A **Schema** is a compiled JSON Schema definition, either: * **Input schema**: Auto-generated from variables in a prompt's messages * **Tool schema**: Manually created for function calling or structured output ```python theme={null} schema = prompt.input_schema schema.id # UUID schema.name # str - e.g., "ProductHelpInput" schema.description # str | None schema.exportedJSON # str - JSON Schema as string ``` ### Input Schema Auto-Sync When you add variables to messages, the input schema updates automatically: ```mermaid theme={null} flowchart TB A["Message: Answer the question: {query}"] --> B["Variable linked to Property 'query' (type: string)"] B --> C["Input Schema gains 'query' property automatically"] ``` This keeps your schema in sync with your actual prompt content. ### Schema Definitions Access full schema definitions via the task: ```python theme={null} task = await client.get_task("task-id") for name, definition in task.definitions.items(): print(f"Schema: {name}") print(f" Type: {definition['type']}") print(f" Properties: {list(definition.get('properties', {}).keys())}") # Moxn metadata embedded in schema metadata = definition.get("x-moxn-metadata", {}) print(f" Schema ID: {metadata.get('schema_id')}") print(f" Prompt ID: {metadata.get('prompt_id')}") ``` ## Relationships ### Pass-by-Reference Messages are **referenced**, not copied, across prompts: ```mermaid theme={null} graph TD Task --> PromptA[Prompt A] Task --> PromptB[Prompt B] Task --> MsgPool[Messages] PromptA --> |uses| msg1[msg_1 - System shared] PromptA --> |uses| msg2[msg_2] PromptA --> |uses| msg3[msg_3] PromptB --> |uses| msg1 PromptB --> |uses| msg4[msg_4] ``` This means: * Updating a shared message updates all prompts using it * Each prompt still gets its own copy at fetch time (SDK doesn't maintain live references) * Reuse is tracked in the web app for easier management ### Anchor IDs Every entity has a stable **anchor ID** that never changes: ```python theme={null} prompt.id # UUID - stable across all branches and commits ``` When you fetch a prompt from different branches, the ID stays the same. Only the content changes. This enables: * Referencing prompts in code without worrying about versions * Tracking the same entity across branches * Stable foreign key relationships ## Entity Lifecycle ```mermaid theme={null} flowchart TB Create[Create - Web App] --> Edit[Edit - Working State] Edit --> Commit[Commit - Version Record] Commit --> Access[Access - SDK] Access --> Branch[By branch → Gets working state] Access --> CommitAccess[By commit → Gets version record - immutable] ``` See [Versioning](/concepts/versioning) for details on branches and commits. ## Next Steps Understand branches and commits Deep dive into the variable system Fetch and use prompts in code Create entities in the web app # Variables & Schemas Source: https://moxn.mintlify.app/concepts/variables How variables, properties, and schemas work together Variables are the bridge between your application data and your prompts. This guide explains how the variable system works. ## The Variable System ```mermaid theme={null} flowchart LR A["Your Code
(Pydantic Model)"] -->|"render()"| B["Moxn
(dict[str, str])"] B -->|"substitute"| C["LLM
(Final Prompt)"] ``` ## How Variables Work ### 1. Define Variables in Messages In the web app, insert variables using the `/variable` command: ``` System: You are a customer support agent for {{company_name}}. User: Customer {{customer_name}} asks: {{query}} Relevant context: {{search_results}} ``` Each `{{variable_name}}` links to a **Property** that defines its type. ### 2. Variables Sync to Schema When you add variables, the prompt's **input schema** updates automatically: ```json theme={null} { "type": "object", "properties": { "company_name": {"type": "string"}, "customer_name": {"type": "string"}, "query": {"type": "string"}, "search_results": {"type": "string"} }, "required": ["query"] } ``` This happens in real-time as you edit—no manual schema management. ### 3. Provide Data at Runtime At runtime, provide values that match the schema: ```python theme={null} session = await client.create_prompt_session( prompt_id="...", session_data=ProductHelpInput( company_name="Acme Corp", customer_name="Alice", query="How do I reset my password?", search_results="[relevant docs as JSON]" ) ) ``` ### 4. Variables Get Substituted When converting to provider format, variables are replaced: ```python theme={null} # Original message block "Customer {{customer_name}} asks: {{query}}" # After substitution "Customer Alice asks: How do I reset my password?" ``` ## Properties A **Property** defines the type and metadata for a variable. ### Property Types | Type | JSON Schema | Python | Use Case | | ------- | ------------------------- | ------------ | --------------- | | String | `{"type": "string"}` | `str` | Text, IDs | | Number | `{"type": "number"}` | `float` | Scores, prices | | Integer | `{"type": "integer"}` | `int` | Counts | | Boolean | `{"type": "boolean"}` | `bool` | Flags | | Object | `{"type": "object", ...}` | Nested model | Structured data | | Array | `{"type": "array", ...}` | `list[T]` | Collections | ### Special Formats String properties can have formats: ```json theme={null} { "type": "string", "format": "date" // "2024-01-15" } { "type": "string", "format": "date-time" // "2024-01-15T10:30:00Z" } { "type": "string", "format": "email" // "user@example.com" } { "type": "string", "format": "uri" // "https://example.com" } ``` ### Complex Properties Properties can define nested structures: ```json theme={null} { "type": "object", "properties": { "id": {"type": "string"}, "title": {"type": "string"}, "content": {"type": "string"}, "score": {"type": "number"} }, "required": ["id", "title", "content"] } ``` Or arrays of complex objects: ```json theme={null} { "type": "array", "items": { "type": "object", "properties": { "title": {"type": "string"}, "content": {"type": "string"} } } } ``` ## The render() Transformation ### Why render()? Variables must be **strings** for prompt injection, but your code uses **typed data**. The `render()` method bridges this gap: ```python theme={null} class ProductHelpInput(RenderableModel): customer_name: str # Simple: just use as-is query: str documents: list[Document] # Complex: needs serialization def render(self, **kwargs) -> dict[str, str]: return { "customer_name": self.customer_name, "query": self.query, "documents": json.dumps([d.model_dump() for d in self.documents]) } ``` ### render() Input vs Output ```python theme={null} # Input (typed) input = ProductHelpInput( customer_name="Alice", query="How do I...", documents=[ Document(title="FAQ", content="..."), Document(title="Guide", content="...") ] ) # Output (all strings) output = input.render() # { # "customer_name": "Alice", # "query": "How do I...", # "documents": '[{"title": "FAQ", ...}, {"title": "Guide", ...}]' # } ``` ### Customizing Format Override `render()` to control formatting: ```python theme={null} def render(self, **kwargs) -> dict[str, str]: # Markdown format docs_md = "\n".join([ f"## {d.title}\n{d.content}" for d in self.documents ]) return { "customer_name": self.customer_name, "query": self.query, "documents": docs_md } ``` Or XML: ```python theme={null} def render(self, **kwargs) -> dict[str, str]: docs_xml = "\n" + "\n".join([ f' {d.content}' for d in self.documents ]) + "\n" return { "customer_name": self.customer_name, "query": self.query, "documents": docs_xml } ``` ## Schemas ### Input Schemas Every prompt has an **input schema** that defines required variables: ```python theme={null} prompt = await client.get_prompt("...", branch_name="main") # Access the input schema schema = prompt.input_schema print(schema.name) # "ProductHelpInput" print(schema.exportedJSON) # Full JSON Schema ``` Input schemas are **auto-generated** from message variables. You don't create them manually. ### Tool Schemas Tool schemas define function calling or structured output: ```python theme={null} # Access tool schemas for tool in prompt.tools: if tool.tool_type == "tool": print(f"Function: {tool.name}") print(f"Schema: {tool.schema}") elif tool.tool_type == "structured_output": print(f"Output schema: {tool.name}") ``` Tool schemas are created manually in the web app. ## Variable Substitution ### How It Works ```mermaid theme={null} flowchart TB A["1. Session created with session_data"] --> A1["ProductHelpInput(customer_name='Alice', ...)"] A1 --> B["2. render() called on session_data"] B --> B1["{'customer_name': 'Alice', ...}"] B1 --> C["3. Each message block processed"] C --> C1["'Hello {{customer_name}}' → 'Hello Alice'"] C1 --> D["4. Result sent to LLM"] ``` ### Variable Formats Variables can be **inline** or **block**: | Format | Example | Description | | ---------- | ---------------------------------------- | ------------------------- | | **Inline** | `The customer {{customer_name}} said...` | Variable embedded in text | | **Block** | `{{search_results}}` | Variable is entire block | This affects rendering—block variables typically appear on their own line. ## Schema Metadata Schemas include Moxn metadata: ```json theme={null} { "type": "object", "properties": {...}, "x-moxn-metadata": { "schema_id": "uuid", "prompt_id": "uuid", "task_id": "uuid", "commit_id": "abc123" // If from a commit } } ``` Codegen'd models expose this: ```python theme={null} class ProductHelpInput(RenderableModel): @classmethod @property def moxn_schema_metadata(cls) -> MoxnSchemaMetadata: return MoxnSchemaMetadata( schema_id="...", prompt_id="...", task_id="..." ) ``` ## Best Practices `customer_query` is better than `q`. Variable names appear in code and logs. Use specific types (date, integer) rather than just string when possible. Format complex data (markdown, XML) for better LLM comprehension. Each prompt should have just the variables it needs. When the number of items varies, use array types. ## Next Steps Generate models from schemas Define variables in the editor Use variables at runtime Understand the full data model # Versioning Source: https://moxn.mintlify.app/concepts/versioning Git-like version control for prompts Moxn implements a Git-inspired versioning system. This guide explains how branches, commits, and working state work together. ## Core Concepts ### Branches A **branch** is an isolated workspace for changes: ```mermaid theme={null} graph LR subgraph main [main - default branch] m1[System prompt v1] m2[User template v1] m3[Working changes...] end subgraph feature [feature-improvements] f1[System prompt v2 - modified] f2[User template v1 - same] f3[More changes...] end ``` **Key properties:** * Each task has a default branch (usually "main") * Branches are isolated—changes don't affect other branches * Create branches for experimentation without risk ### Commits A **commit** is an immutable snapshot of the entire task state: ```mermaid theme={null} graph TD C[Commit: abc123] C --> T["Task: name='Support Bot', description='...'"] C --> P["Prompts: [prompt_1_v5, prompt_2_v3]"] C --> M["Messages: [msg_1_v2, msg_2_v1, msg_3_v1]"] C --> S["Schemas: [schema_1_v2]"] ``` **Key properties:** * Commits are immutable—once created, they never change * A commit captures ALL entities in the task at that moment * Use commit IDs for reproducibility ### Working State **Working state** represents uncommitted changes on a branch: ```mermaid theme={null} graph TD B[Branch: feature-xyz] B --> H[Head Commit: abc123] B --> W[Working State] W --> WM["Modified: message_2 (new content)"] W --> WA[Added: message_4] W --> WD[Deleted: message_3] ``` **Key properties:** * Working state is mutable * Only exists per branch * Gets cleared when you commit ## Access Patterns ### Branch Access Fetching by branch returns the **latest state** (including uncommitted changes): ```python theme={null} # Gets working state + base commit prompt = await client.get_prompt( prompt_id="...", branch_name="main" ) ``` **What you get:** 1. Start with the branch's head commit 2. Overlay any working state modifications 3. Apply any deletions 4. Return the merged "current state" **Use for:** Development, testing, rapid iteration ### Commit Access Fetching by commit returns an **immutable snapshot**: ```python theme={null} # Gets exact state at commit time prompt = await client.get_prompt( prompt_id="...", commit_id="abc123def456" ) ``` **What you get:** * The exact prompt state when that commit was created * Guaranteed to never change * Cached indefinitely by the SDK **Use for:** Production, reproducibility, auditing ### Branch Head Access To get the latest **committed** state (without working changes): ```python theme={null} # Step 1: Get the branch head head = await client.get_branch_head( task_id="task-uuid", branch_name="main" ) # Step 2: Fetch by that commit prompt = await client.get_prompt( prompt_id="...", commit_id=head.effectiveCommitId ) ``` **What you get:** * The most recent committed state * No work-in-progress changes * Still immutable **Use for:** Deploying "stable" versions, CI/CD ## Resolution Logic When you fetch by branch, here's what happens: ```mermaid theme={null} flowchart TB A["1. Find branch head commit"] --> A1["commit 'abc123'"] A1 --> B["2. Load version records from commit"] B --> B1["prompt_v5, message_v2, message_v1"] B1 --> C["3. Check for working state modifications"] C --> C1["message_v2 has working state changes"] C1 --> D["4. Check for branch deletions"] D --> D1["message_3 was deleted"] D1 --> E["5. Merge to current state"] E --> E1["prompt with modified message_2, without message_3"] ``` This resolution happens server-side. The SDK receives the resolved state. ## Production Deployment Patterns ### Pattern 1: Pin to Commit The safest approach—pin production to a specific commit: ```python theme={null} # In your config or environment PROMPT_COMMIT_ID = "abc123def456" # In your code session = await client.create_prompt_session( prompt_id="...", commit_id=PROMPT_COMMIT_ID ) ``` **Pros:** * Completely immutable * Perfect reproducibility * Safe from accidental changes **Cons:** * Manual updates required * Need to track commit IDs ### Pattern 2: Latest Commit on Branch Use the branch head, but only committed state: ```python theme={null} # Get latest committed state head = await client.get_branch_head("task-id", "production") session = await client.create_prompt_session( prompt_id="...", commit_id=head.effectiveCommitId ) ``` **Pros:** * Automatically gets new commits * No work-in-progress changes * Can use a "production" branch for controlled releases **Cons:** * Any commit to the branch goes live * Need branch discipline ### Pattern 3: Branch Access (Development Only) For development and testing: ```python theme={null} session = await client.create_prompt_session( prompt_id="...", branch_name="main" ) ``` **Pros:** * Always latest, including uncommitted * Great for rapid iteration **Cons:** * Can change unexpectedly * Not suitable for production ## Caching Behavior The SDK caches based on access pattern: | Access | Cached | Reason | | ------------------- | ------ | --------------------- | | `commit_id="..."` | Yes | Commits are immutable | | `branch_name="..."` | No | Branches change | ```python theme={null} # First call: fetches from API prompt1 = await client.get_prompt("...", commit_id="abc123") # Second call: returns from cache prompt2 = await client.get_prompt("...", commit_id="abc123") # Always fetches: branch could have changed prompt3 = await client.get_prompt("...", branch_name="main") ``` ## Branch Response Fields When fetching a branch head: ```python theme={null} head = await client.get_branch_head("task-id", "main") head.branchId # UUID head.branchName # str head.taskId # UUID head.headCommitId # str | None - latest commit on this branch head.parentCommitId # str | None - where branch forked from head.effectiveCommitId # str - what to use (head or parent if no commits) head.hasUncommittedChanges # bool - is there working state? head.lastCommittedAt # datetime | None head.isDefault # bool - is this the default branch? ``` ## Entity Version Context Fetched entities include version context: ```python theme={null} prompt = await client.get_prompt("...", branch_name="main") prompt.branch_id # UUID | None - if fetched by branch prompt.commit_id # UUID | None - if fetched by commit ``` This helps with: * Knowing which version you're working with * Including version info in telemetry * Debugging version-related issues ## Immutability Guarantees ### What's Immutable * **Commits**: Once created, never change * **Version records**: The state captured in a commit * **Content records**: Message and property content is content-addressed ### What's Mutable * **Working state**: Changes until committed * **Branch pointers**: Head moves with new commits * **Deletions**: Tracked per-branch ## Best Practices Always pin production deployments to specific commit IDs for reproducibility. Don't experiment on main. Create branches to test changes safely. Commits are cheap and create restore points. During development, use branch access for rapid iteration. Use a dedicated "production" branch that only gets stable commits. ## Next Steps Understand the data model Fetch prompts by branch or commit Manage branches in the web app Track which versions are used # Why Moxn? Source: https://moxn.mintlify.app/context The problems Moxn solves for AI engineering teams # Why Moxn? Prompts are code, but they don't have the tooling. When building AI applications, you face a familiar set of challenges: * **No dedicated tooling**: Prompts are scattered across strings, YAML files, and spreadsheets—with no proper editor for structured content * **Version control friction**: Prompts either live in git (coupled to deploys, painful for domain experts) or in config systems (schemaless, painful for engineers) * **No type safety**: Input variables are *stringly*-typed, leading to runtime errors * **No observability**: You can't see what prompts actually ran in production * **No reuse**: Want a shared system message across multiple agent surfaces? Good luck * **No collaboration**: No shared workflows for reviewing prompts or debugging production traces Moxn solves these problems by treating prompts as first-class versioned entities with type-safe interfaces and full observability. ## Core Architecture Moxn separates **content management** from **runtime execution**: Messages, variables, and model config—stored in Moxn, versioned like code. Template + your runtime data, created in your application. A plain Python dict you pass directly to the provider SDK. ```mermaid theme={null} sequenceDiagram participant App as Your App participant Moxn as Moxn SDK participant LLM as Anthropic/OpenAI App->>Moxn: get_prompt(prompt_id) Moxn-->>App: Prompt Template Note right of App: Template + session_data App->>Moxn: create_prompt_session(template, data) Moxn-->>App: Prompt Session App->>App: session.to_anthropic_invocation() Note right of App: Returns a plain dict App->>LLM: messages.create(**invocation) LLM-->>App: response App->>Moxn: log_telemetry_event(response) ``` ## Design Philosophy ### Moxn Builds Payloads, You Own the Integration The SDK produces standard Python dictionaries. You unpack them directly into provider SDKs: ```python theme={null} # Moxn builds the payload from your template + data invocation = session.to_anthropic_invocation() # You call the provider directly—no wrapper, no magic response = anthropic.messages.create(**invocation) ``` This means you can always: * **Modify the payload** before sending (add headers, override settings) * **Use new provider features** without waiting for SDK updates * **Compose with other tools** in your stack Moxn simplifies the common path without making edge cases harder. ## Key Features A block-based editor with mermaid diagrams, code blocks, XML documents, and multimodal content. Author prompts and review traces in the same interface. Branch, commit, and rollback prompts. Pin production to specific commits. Review diffs before deploying. Auto-generated Pydantic models ensure type safety from editor to runtime. Get autocomplete and validation. View traces and spans in the same rich editor. W3C Trace Context compatible with complete LLM event logging. Message editor with reminders and code blocks ## Next Steps Install and run your first prompt See the complete development cycle # Document Analysis Pipeline Source: https://moxn.mintlify.app/examples/building Step-by-step guide to creating prompts, variables, and schemas This example walks through building a complete document analysis pipeline in the Moxn web app, demonstrating variables, typed properties, enums, and code generation. ## What We'll Build A three-prompt pipeline that: 1. **Classifies** documents into categories (contract, invoice, report, etc.) 2. **Extracts** structured entities from the document 3. **Generates** a summary report ## Step 1: Create a Task Navigate to the dashboard and click **Create Task**. Name it `document-analysis-pipeline` with a description. A Task is a container for related prompts—like a Git repository for your AI features. All prompts within a task share schemas and are versioned together. ## Step 2: Create the Classifier Prompt ### Add a System Message Create a new prompt called `document-classifier`. Add a system message with instructions: ``` You are a document classification expert. Analyze the provided document and classify it into one of the following categories: contract, invoice, report, memo, or email. Be precise and consider the document's structure, language, and purpose. ``` ### Add a User Message with Variables Create a user message. Instead of hardcoding content, we'll use a **variable** to inject the document at runtime. Type `/` in the editor to open the slash command menu: Slash command menu Select **Variable Block** to open the property editor: Property editor Configure the variable: * **Property Name**: `document` * **Description**: "The document content to classify" * **Type**: String The type dropdown shows all available types: Type dropdown After clicking **Create**, the variable appears as a styled block in your message: Variable block in editor ## Step 3: Define the Output Schema Navigate to the **Schemas** tab. You'll see: * **Input Schemas**: Auto-generated from prompt variables * **User-Defined Schemas**: Custom schemas for structured outputs Schemas overview ### Create an Enum Schema Click **Create Schema** and name it `ClassificationResult`. Add a property `document_type` with **allowed values** to create an enum: Enum configuration Enter comma-separated values: `contract, invoice, report, memo, email` The validation message confirms: "Must be one of: contract, invoice, report, memo, email" ## Step 4: Generate Pydantic Models Run code generation to create typed Python models: ```python theme={null} import asyncio from moxn import MoxnClient async def generate(): async with MoxnClient() as client: await client.generate_task_models( task_id="your-task-id", branch_name="main", output_dir="./models" ) asyncio.run(generate()) ``` This generates: ```python theme={null} # models/document_analysis_pipeline_models.py from enum import Enum from pydantic import BaseModel from moxn.types.base import RenderableModel class DocumentType(str, Enum): CONTRACT = "contract" INVOICE = "invoice" REPORT = "report" MEMO = "memo" EMAIL = "email" class ClassificationResult(BaseModel): """Structured output schema for document classification.""" document_type: DocumentType confidence: float | None = None class DocumentClassifierInput(RenderableModel): """Input schema for document-classifier prompt.""" document: str def render(self, **kwargs) -> dict[str, str]: return {"document": self.document} ``` ## Step 5: Use in Your Application ```python theme={null} from moxn import MoxnClient from moxn.types.content import Provider from anthropic import Anthropic from models.document_analysis_pipeline_models import ( DocumentClassifierInput, ClassificationResult ) async def classify_document(document_text: str) -> ClassificationResult: async with MoxnClient() as client: session = await client.create_prompt_session( prompt_id="document-classifier", branch_name="main", session_data=DocumentClassifierInput(document=document_text) ) async with client.span( session, name="classify_document", metadata={"doc_length": len(document_text)} ) as span: anthropic = Anthropic() response = anthropic.messages.create( **session.to_anthropic_invocation(), extra_headers={"anthropic-beta": "structured-outputs-2025-11-13"} ) parsed = session.parse_response(response) result = ClassificationResult.model_validate_json( parsed.candidates[0].content[0].text ) # Log with classification result in event attributes event = session.create_llm_event_from_parsed_response( parsed_response=parsed, attributes={"document_type": result.document_type.value} ) await client.log_telemetry_event(event) return result ``` ## Extending the Pipeline ### Entity Extractor with Object Schema Create a second prompt `entity-extractor` with an object schema for extracted entities: ```python theme={null} class ExtractedEntities(BaseModel): """Entities extracted from a document.""" people: list[str] = [] organizations: list[str] = [] dates: list[str] = [] amounts: list[float] = [] key_terms: list[str] = [] class EntityExtractorInput(RenderableModel): document: str document_type: DocumentType # Reference the enum from classifier def render(self, **kwargs) -> dict[str, str]: return { "document": self.document, "document_type": self.document_type.value } ``` ### Report Generator with Schema Reference Create a third prompt `report-generator` that references outputs from earlier prompts: ```python theme={null} class ReportGeneratorInput(RenderableModel): document: str classification: ClassificationResult # Reference classifier output entities: ExtractedEntities # Reference extractor output def render(self, **kwargs) -> dict[str, str]: return { "document": self.document, "classification": self.classification.model_dump_json(), "entities": self.entities.model_dump_json() } ``` ## Complete Pipeline ```python theme={null} async def analyze_document(document_text: str) -> dict: """Run the complete document analysis pipeline.""" async with MoxnClient() as client: # Step 1: Classify classification = await classify_document(document_text) # Step 2: Extract entities entities = await extract_entities( document_text, classification.document_type ) # Step 3: Generate report report = await generate_report( document_text, classification, entities ) return { "classification": classification, "entities": entities, "report": report } ``` ## Key Concepts Demonstrated | Feature | Where Used | | --------------------- | ------------------------------------------ | | **Variables** | `document` variable in classifier input | | **Enums** | `DocumentType` with allowed values | | **Objects** | `ExtractedEntities` with nested fields | | **Schema References** | `ReportGeneratorInput` using other schemas | | **Code Generation** | Type-safe Pydantic models | | **Telemetry** | Spans and logging for observability | ## Next Steps Add retrieval to your prompts Parallel execution patterns Advanced variable configuration Schema design patterns # Code Generation Source: https://moxn.mintlify.app/guides/codegen Generate type-safe Pydantic models from your prompts Moxn can generate Pydantic models from your prompt schemas, giving you type-safe interfaces for your LLM applications. This guide covers how code generation works and how to use the generated models. ## Why Code Generation? Without codegen, you'd write: ```python theme={null} # No type safety, easy to make mistakes session = await client.create_prompt_session( prompt_id="...", session_data={"qurey": "typo here", "user_id": 123} # Oops! ) ``` With codegen: ```python theme={null} # Type-safe, IDE autocomplete, validation from generated_models import ProductHelpInput session = await client.create_prompt_session( prompt_id="...", session_data=ProductHelpInput( query="How do I reset my password?", # Autocomplete! user_id="user_123" # Type checked! ) ) ``` ## Generating Models ### Using MoxnClient Generate models for all prompts in a task: ```python theme={null} from moxn import MoxnClient async with MoxnClient() as client: result = await client.generate_task_models( task_id="your-task-id", branch_name="main", # or commit_id="..." output_dir="./generated" # Where to save the file ) print(f"Generated: {result.filename}") print(f"Code:\n{result.generated_code}") ``` **Parameters:** * `task_id`: The task containing your prompts * `branch_name` or `commit_id`: Which version to generate from * `output_dir`: Directory to write the generated file (optional) **Returns:** `DatamodelCodegenResponse` with: * `filename`: The generated file name * `generated_code`: The Python code ### Output File The generated file is named after your task: * generated/ * customer\_support\_bot\_models.py ## What Gets Generated For each prompt with an input schema, you get: ### 1. A Pydantic Model ```python theme={null} from pydantic import Field from moxn.types.base import RenderableModel, MoxnSchemaMetadata class ProductHelpInput(RenderableModel): """Input schema for Product Help prompt.""" query: str = Field(..., description="The user's question") user_id: str = Field(..., description="User identifier") documents: list[Document] = Field( default_factory=list, description="Relevant documents from search" ) @classmethod @property def moxn_schema_metadata(cls) -> MoxnSchemaMetadata: return MoxnSchemaMetadata( schema_id="...", prompt_id="...", task_id="..." ) def render(self, **kwargs) -> dict[str, str]: return { "query": self.query, "user_id": self.user_id, "documents": json.dumps([d.model_dump() for d in self.documents]), } ``` ### 2. A TypedDict for Rendered Output ```python theme={null} class ProductHelpInputRendered(TypedDict): """Rendered (string-valued) version of ProductHelpInput.""" query: str user_id: str documents: str # JSON string ``` ### 3. Nested Types Complex schemas generate nested models: ```python theme={null} class Document(RenderableModel): """A search result document.""" id: str title: str content: str score: float class ProductHelpInput(RenderableModel): documents: list[Document] ``` ## The Two Representations Code generation produces **two related types** for each schema: | Type | Purpose | Values | | -------------- | ------------------------------- | -------------------------- | | Pydantic Model | Input validation, IDE support | Typed (str, int, list\[T]) | | TypedDict | What gets injected into prompts | All strings | This separation exists because: 1. **Your code** works with typed data (lists, numbers, nested objects) 2. **Prompts** receive string values (JSON, markdown, custom formats) The `render()` method bridges these two: ```python theme={null} # Input: typed data input = ProductHelpInput( query="How do I...", documents=[Document(id="1", title="FAQ", content="...", score=0.95)] ) # Output: flat string dict rendered = input.render() # {"query": "How do I...", "documents": "[{\"id\": \"1\", ...}]"} ``` ## Customizing render() The generated `render()` method provides a default implementation, but you can override it: ### Default behavior ```python theme={null} def render(self, **kwargs) -> dict[str, str]: return { "query": self.query, "documents": json.dumps([d.model_dump() for d in self.documents]) } ``` ### Custom markdown formatting ```python theme={null} class ProductHelpInput(RenderableModel): documents: list[Document] def render(self, **kwargs) -> dict[str, str]: # Format documents as markdown docs_md = "\n\n".join([ f"## {doc.title}\n\n{doc.content}\n\n*Relevance: {doc.score:.0%}*" for doc in self.documents ]) return { "query": self.query, "documents": docs_md } ``` ### Custom XML formatting ```python theme={null} def render(self, **kwargs) -> dict[str, str]: docs_xml = "\n".join([ f'\n' f' {doc.title}\n' f' {doc.content}\n' f'' for doc in self.documents ]) return { "query": self.query, "documents": f"\n{docs_xml}\n" } ``` ### Using kwargs Pass extra parameters to `render()`: ```python theme={null} def render(self, **kwargs) -> dict[str, str]: format_type = kwargs.get("format", "json") if format_type == "markdown": docs = self._format_markdown() elif format_type == "xml": docs = self._format_xml() else: docs = json.dumps([d.model_dump() for d in self.documents]) return {"query": self.query, "documents": docs} # Usage session = PromptSession.from_prompt_template( prompt=prompt, session_data=input_data, render_kwargs={"format": "markdown"} ) ``` ## Schema Metadata Generated models include metadata linking them to their source: ```python theme={null} @classmethod @property def moxn_schema_metadata(cls) -> MoxnSchemaMetadata: return MoxnSchemaMetadata( schema_id="550e8400-e29b-41d4-a716-446655440000", schema_version_id="version-uuid-if-from-commit", prompt_id="prompt-uuid", prompt_version_id="prompt-version-uuid", task_id="task-uuid", branch_id="branch-uuid-if-from-branch", commit_id="commit-id-if-from-commit" ) ``` This enables: * Creating sessions directly from session data * Tracking which schema version was used in telemetry * Validating that session data matches the expected prompt ## When to Regenerate Regenerate models when: * You add or modify variables in your prompts * You change property types * You add new prompts to your task * You want to capture a new commit version ### Workflow suggestion Run codegen as part of your development workflow: ```bash theme={null} # In your project's Makefile or scripts generate-models: python -c " import asyncio from moxn import MoxnClient async def main(): async with MoxnClient() as client: await client.generate_task_models( task_id='your-task-id', branch_name='main', output_dir='./src/generated' ) asyncio.run(main()) " ``` Or add to CI/CD: ```yaml theme={null} # GitHub Actions example - name: Generate Moxn models run: | python scripts/generate_models.py git diff --exit-code src/generated/ ``` ## Without Code Generation You don't have to use codegen. You can create your own models: ```python theme={null} from pydantic import BaseModel from moxn.types.base import RenderableModel class MyInput(RenderableModel): query: str context: list[str] def render(self, **kwargs) -> dict[str, str]: return { "query": self.query, "context": "\n".join(self.context) } # Use directly session = await client.create_prompt_session( prompt_id="...", session_data=MyInput(query="...", context=["..."]) ) ``` The key requirement is implementing the `RenderableModel` protocol: ```python theme={null} class RenderableModel(Protocol): def render(self, **kwargs) -> dict[str, str]: """Return flat string dict for variable substitution.""" ... @classmethod @property def moxn_schema_metadata(cls) -> MoxnSchemaMetadata | None: """Optional metadata linking to Moxn schema.""" ... ``` ## Type Mappings JSON Schema types map to Python types: | JSON Schema | Python Type | | ------------------------------ | ----------------------- | | `string` | `str` | | `integer` | `int` | | `number` | `float` | | `boolean` | `bool` | | `array` | `list[T]` | | `object` | nested model or `dict` | | `string` + `format: date` | `date` | | `string` + `format: date-time` | `datetime` | | `string` + `format: email` | `str` (with validation) | | `string` + `format: uri` | `str` (with validation) | ## Next Steps Use generated models with sessions Understand how schemas work See codegen in a complete example Define variables in the web app # Working with Prompts Source: https://moxn.mintlify.app/guides/prompts Fetching and managing prompts with MoxnClient This guide covers how to fetch prompts and tasks from Moxn, including caching behavior and access patterns. ## MoxnClient The `MoxnClient` is your primary interface to the Moxn API. Always use it as an async context manager: ```python theme={null} from moxn import MoxnClient async with MoxnClient() as client: # Your code here prompt = await client.get_prompt(...) ``` The context manager: * Creates and manages HTTP connections * Starts the telemetry dispatcher * Ensures proper cleanup on exit * Flushes pending telemetry events ### Configuration The client reads configuration from environment variables: | Variable | Description | Default | | --------------- | ------------------------- | ---------------------- | | `MOXN_API_KEY` | Your API key (required) | - | | `MOXN_BASE_URL` | API base URL | `https://api.moxn.dev` | | `MOXN_TIMEOUT` | Request timeout (seconds) | 30 | ## Fetching Prompts ### get\_prompt() Fetch a single prompt by ID: ```python theme={null} # By branch (development) prompt = await client.get_prompt( prompt_id="550e8400-e29b-41d4-a716-446655440000", branch_name="main" ) # By commit (production) prompt = await client.get_prompt( prompt_id="550e8400-e29b-41d4-a716-446655440000", commit_id="abc123def456" ) ``` **Parameters:** * `prompt_id`: UUID or string ID of the prompt * `branch_name`: Branch to fetch from (mutually exclusive with `commit_id`) * `commit_id`: Specific commit to fetch (mutually exclusive with `branch_name`) **Returns:** `PromptTemplate` object ### get\_task() Fetch an entire task with all its prompts: ```python theme={null} task = await client.get_task( task_id="task-uuid", branch_name="main" ) # Access prompts for prompt in task.prompts: print(f"{prompt.name}: {len(prompt.messages)} messages") # Access schema definitions for name, schema in task.definitions.items(): print(f"Schema: {name}") ``` **Parameters:** * `task_id`: UUID or string ID of the task * `branch_name`: Branch to fetch from * `commit_id`: Specific commit to fetch **Returns:** `Task` object containing all prompts and schemas ## Access Patterns ### Branch Access (Development) Use `branch_name` during development to always get the latest version: ```python theme={null} # Always fetches fresh data from the API prompt = await client.get_prompt( prompt_id="...", branch_name="main" ) ``` **Characteristics:** * Returns the latest state including uncommitted changes * Not cached (always fetches fresh) * May change between calls * Includes working state modifications ### Commit Access (Production) Use `commit_id` in production for immutable, reproducible prompts: ```python theme={null} # Cached after first fetch prompt = await client.get_prompt( prompt_id="...", commit_id="abc123def456" ) ``` **Characteristics:** * Returns an immutable snapshot * Cached indefinitely (commits never change) * Guaranteed reproducibility * No working state, only committed data ### Getting the Latest Commit To get the latest committed state (without uncommitted changes), use a two-step pattern: ```python theme={null} # Step 1: Get the branch head commit head = await client.get_branch_head( task_id="task-uuid", branch_name="main" ) # Step 2: Fetch by commit ID prompt = await client.get_prompt( prompt_id="...", commit_id=head.effectiveCommitId ) ``` This is useful when you want the "stable" state of a branch without any work-in-progress changes. ## Caching Behavior The SDK uses an in-memory cache for commit-based access: ```python theme={null} # First call: fetches from API, stores in cache prompt1 = await client.get_prompt("...", commit_id="abc123") # Second call: returns from cache (no API call) prompt2 = await client.get_prompt("...", commit_id="abc123") # Branch access: always fetches (never cached) prompt3 = await client.get_prompt("...", branch_name="main") ``` **Caching rules:** * Commit-based fetches are cached (commits are immutable) * Branch-based fetches always go to the API (branches change) * Cache is per-client instance * Cache is in-memory only (not persisted) ## PromptTemplate Structure When you fetch a prompt, you get a `PromptTemplate` object: ```python theme={null} prompt = await client.get_prompt(...) # Core properties prompt.id # UUID prompt.name # str prompt.description # str | None prompt.task_id # UUID # Content prompt.messages # list[Message] prompt.input_schema # Schema | None # Versioning context prompt.branch_id # UUID | None prompt.commit_id # UUID | None # Tools and completion config prompt.tools # list[SdkTool] prompt.completion_config # CompletionConfig | None prompt.function_tools # list[SdkTool] (tool_type='tool') prompt.structured_output_schema # SdkTool | None (tool_type='structured_output') ``` ### Accessing Messages ```python theme={null} # Get all messages for message in prompt.messages: print(f"[{message.role}] {message.name}") for block_group in message.blocks: for block in block_group: print(f" - {block.block_type}") # Get messages by role system_messages = [m for m in prompt.messages if m.role == "system"] user_messages = [m for m in prompt.messages if m.role == "user"] # Get a specific message by role system = prompt.get_message_by_role("system") ``` ### Messages contain blocks Messages use a 2D array structure for content blocks: ```python theme={null} message.blocks # list[list[ContentBlock]] # Outer list: paragraphs/sections # Inner list: blocks within a paragraph ``` Block types include: * `TextContent`: Plain text * `Variable`: Template variables * `ImageContentFromSource`: Images * `PDFContentFromSource`: PDF documents * `ToolCall` / `ToolResult`: Function calling ## Error Handling Handle common errors when fetching prompts: ```python theme={null} import httpx async with MoxnClient() as client: try: prompt = await client.get_prompt( prompt_id="...", branch_name="main" ) except httpx.HTTPStatusError as e: if e.response.status_code == 404: print("Prompt not found") elif e.response.status_code == 403: print("Not authorized to access this prompt") else: raise ``` ## Verifying Access Before making calls, you can verify your API key is valid: ```python theme={null} async with MoxnClient() as client: info = await client.verify_access() print(f"Authenticated: {info['authenticated']}") print(f"Tenant: {info['tenant_id']}") ``` ## Next Steps Combine prompts with runtime data Convert prompts to provider formats Understand branches and commits Learn about Tasks, Prompts, and Messages # Provider Integration Source: https://moxn.mintlify.app/guides/providers Converting prompts to Anthropic, OpenAI, and Google formats Moxn supports multiple LLM providers. This guide covers how to convert prompts to provider-specific formats and handle their responses. ## Supported Providers ```python theme={null} from moxn.types.content import Provider Provider.ANTHROPIC # Claude (Anthropic) Provider.OPENAI_CHAT # GPT models (OpenAI Chat Completions) Provider.OPENAI_RESPONSES # OpenAI Responses API Provider.GOOGLE_GEMINI # Gemini (Google AI Studio) Provider.GOOGLE_VERTEX # Gemini (Vertex AI) ``` ## Anthropic (Claude) ### Basic usage ```python theme={null} from moxn import MoxnClient from moxn.types.content import Provider from anthropic import Anthropic async with MoxnClient() as client: session = await client.create_prompt_session( prompt_id="...", session_data=your_input ) anthropic = Anthropic() response = anthropic.messages.create( **session.to_anthropic_invocation() ) # Log telemetry async with client.span(session) as span: await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) ``` ### What to\_anthropic\_invocation() returns ```python theme={null} { "system": "Your system message...", # Optional "messages": [ {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."} ], "model": "claude-sonnet-4-20250514", # From completion_config "max_tokens": 4096, "temperature": 0.7, # If tools configured: "tools": [...], "tool_choice": {"type": "auto"}, # If structured output configured: "output_format": {...} } ``` ### Extended thinking For Claude models with extended thinking: ```python theme={null} response = anthropic.messages.create( **session.to_anthropic_invocation( thinking={"type": "enabled", "budget_tokens": 10000} ), extra_headers={"anthropic-beta": "interleaved-thinking-2025-05-14"} ) ``` ### Structured outputs If your prompt has a structured output schema configured: ```python theme={null} response = anthropic.messages.create( **session.to_anthropic_invocation(), extra_headers={"anthropic-beta": "structured-outputs-2025-11-13"} ) ``` ## OpenAI (GPT) ### Chat Completions API ```python theme={null} from openai import OpenAI openai = OpenAI() response = openai.chat.completions.create( **session.to_openai_chat_invocation() ) # Log telemetry async with client.span(session) as span: await client.log_telemetry_event_from_response( session, response, Provider.OPENAI_CHAT ) ``` ### What to\_openai\_chat\_invocation() returns ```python theme={null} { "messages": [ {"role": "system", "content": "..."}, {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."} ], "model": "gpt-4o", "max_tokens": 4096, "temperature": 0.7, # If tools configured: "tools": [...], "tool_choice": "auto", "parallel_tool_calls": True, # If structured output configured: "response_format": {...} } ``` ### Responses API For OpenAI's newer Responses API: ```python theme={null} response = openai.responses.create( **session.to_openai_responses_invocation() ) await client.log_telemetry_event_from_response( session, response, Provider.OPENAI_RESPONSES ) ``` ### Reasoning models For o1, o3, and other reasoning models: ```python theme={null} response = openai.chat.completions.create( **session.to_openai_chat_invocation( thinking={"reasoning_effort": "high"} ) ) ``` ## Google (Gemini) ### Google AI Studio ```python theme={null} from google import genai google_client = genai.Client() response = google_client.models.generate_content( **session.to_google_gemini_invocation() ) # Log telemetry async with client.span(session) as span: await client.log_telemetry_event_from_response( session, response, Provider.GOOGLE_GEMINI ) ``` ### Vertex AI ```python theme={null} from google import genai vertex_client = genai.Client(vertexai=True) response = vertex_client.models.generate_content( **session.to_google_vertex_invocation() ) await client.log_telemetry_event_from_response( session, response, Provider.GOOGLE_VERTEX ) ``` ### What to\_google\_gemini\_invocation() returns ```python theme={null} { "model": "gemini-2.5-flash", "contents": [...], # Conversation content "config": { "system_instruction": "...", "max_output_tokens": 4096, "temperature": 0.7, # If tools configured: "tools": [{"function_declarations": [...]}], "tool_config": {...}, # If structured output: "response_schema": {...}, "response_mime_type": "application/json" } } ``` ### Thinking models For Gemini thinking models: ```python theme={null} response = google_client.models.generate_content( **session.to_google_gemini_invocation( thinking={"thinking_budget": 10000} ) ) ``` ## Generic Provider Method Use `to_invocation()` for provider-agnostic code: ```python theme={null} from moxn.types.content import Provider # Use provider from prompt's completion_config payload = session.to_invocation() # Or specify explicitly payload = session.to_invocation(provider=Provider.ANTHROPIC) # With overrides payload = session.to_invocation( provider=Provider.OPENAI_CHAT, model="gpt-4o", max_tokens=8000, temperature=0.5 ) ``` ## Message-Only Methods If you only need messages (without model config): ```python theme={null} # Generic method (uses stored provider from completion_config) messages = session.to_messages() # Or override provider explicitly messages = session.to_messages(provider=Provider.ANTHROPIC) # Or use provider-specific methods anthropic_payload = session.to_anthropic_messages() # {system, messages} openai_payload = session.to_openai_chat_messages() # {messages} google_payload = session.to_google_gemini_messages() # {system_instruction, content} ``` ## Parsing Responses Parse any provider's response to a normalized format: ```python theme={null} # Parse response (uses stored provider from completion_config) parsed = session.parse_response(response) # Or override provider explicitly # parsed = session.parse_response(response, provider=Provider.ANTHROPIC) # Access normalized data parsed.candidates # list[Candidate] - response options parsed.input_tokens # int | None parsed.output_tokens # int | None parsed.model # str | None parsed.stop_reason # str | None parsed.raw_response # dict - original response parsed.provider # Provider # Each candidate has content blocks for candidate in parsed.candidates: for block in candidate.content: match block.block_type: case "text": print(block.text) case "tool_call": print(f"{block.tool_name}: {block.input}") case "thinking": print(f"Thinking: {block.text}") ``` ## Tool Use If your prompt has tools configured, they're automatically included: ```python theme={null} # Tools are included in the invocation response = anthropic.messages.create( **session.to_anthropic_invocation() ) # Check for tool calls in response parsed = session.parse_response(response) for candidate in parsed.candidates: for block in candidate.content: if block.block_type == "tool_call": # Execute the tool result = execute_tool(block.tool_name, block.input) # Add tool result to session (if doing multi-turn) # Then call the LLM again... ``` ### Tool choice The SDK translates tool\_choice across providers: | Moxn Setting | Anthropic | OpenAI | Google | | ------------- | --------------------------------- | --------------------------------------------------- | ---------------------- | | `"auto"` | `{"type": "auto"}` | `"auto"` | `{"mode": "AUTO"}` | | `"required"` | `{"type": "any"}` | `"required"` | `{"mode": "ANY"}` | | `"none"` | Tools omitted | `"none"` | `{"mode": "NONE"}` | | `"tool_name"` | `{"type": "tool", "name": "..."}` | `{"type": "function", "function": {"name": "..."}}` | `{"mode": "ANY", ...}` | ## Multimodal Content Images and PDFs are automatically converted to provider-specific formats: ```python theme={null} # Anthropic: base64 with media_type { "type": "image", "source": { "type": "base64", "media_type": "image/png", "data": "..." } } # OpenAI: data URI { "type": "image_url", "image_url": {"url": "data:image/png;base64,..."} } # Google: Part with inline_data Part(inline_data=Blob(mime_type="image/png", data=...)) ``` The SDK handles signed URL refresh automatically for images and PDFs stored in cloud storage. ## Error Handling Handle provider-specific errors: ```python theme={null} from anthropic import APIError as AnthropicError from openai import APIError as OpenAIError try: response = anthropic.messages.create( **session.to_anthropic_invocation() ) except AnthropicError as e: if "rate_limit" in str(e): # Handle rate limiting await asyncio.sleep(60) else: raise ``` ## Provider Feature Matrix | Feature | Anthropic | OpenAI Chat | OpenAI Responses | Google | | ----------------- | -------------- | ----------- | ---------------- | --------- | | System messages | Separate field | In messages | Instructions | Config | | Tools | Yes | Yes | Yes | Yes | | Structured output | Yes (beta) | Yes | Yes | Yes | | Images | Yes | Yes | Yes | Yes | | PDFs | Yes | Yes | Limited | Yes | | Extended thinking | Yes | Yes (o1/o3) | Yes | Yes | | Streaming | SDK level | SDK level | SDK level | SDK level | ## Next Steps Generate type-safe input models Configure and parse structured responses Work with images and documents Log provider interactions # Prompt Sessions Source: https://moxn.mintlify.app/guides/sessions Runtime prompt execution with PromptSession A `PromptSession` is the runtime representation of a prompt combined with your input data. It handles variable substitution, provider conversion, and response parsing. ## Creating Sessions ### From prompt ID The simplest way to create a session: ```python theme={null} async with MoxnClient() as client: session = await client.create_prompt_session( prompt_id="your-prompt-id", branch_name="main", session_data=YourInputModel( query="How do I reset my password?", user_id="user_123" ) ) ``` This fetches the prompt and creates a session in one call. ### From session data with metadata If your codegen'd model has `moxn_schema_metadata`, you can create a session from just the data: ```python theme={null} from generated_models import ProductHelpInput session_data = ProductHelpInput( query="How do I reset my password?", user_id="user_123" ) # Session data knows its prompt ID from metadata session = await client.prompt_session_from_session_data( session_data=session_data, branch_name="main" ) ``` ### From a PromptTemplate directly For more control, create sessions manually: ```python theme={null} from moxn.models.prompt import PromptSession prompt = await client.get_prompt("...", branch_name="main") session = PromptSession.from_prompt_template( prompt=prompt, session_data=YourInputModel(...) ) ``` ## Session Data and Rendering ### The render() flow Session data goes through a transformation pipeline: ```mermaid theme={null} flowchart TB A["YourInputModel (Pydantic)"] --> B[".render()"] B --> C["dict[str, RenderValue]"] C --> D["Variable substitution in messages"] D --> E["Provider-specific format"] subgraph RenderValue["RenderValue Types"] S["str - text values"] CB["ContentBlock - images, PDFs"] ARR["Sequence[ContentBlock] - arrays"] end ``` The `render()` method returns a dictionary where values can be: * **Strings**: Simple text values (the base case) * **ContentBlocks**: Multimodal content like images and PDFs * **Arrays**: Sequences of ContentBlocks for structured context (e.g., citations) ### How render() works The `render()` method transforms your typed data into a dictionary that maps variable names to values. The base case returns string values: ```python theme={null} class ProductHelpInput(RenderableModel): query: str user_id: str documents: list[Document] def render(self, **kwargs) -> dict[str, str]: return { "query": self.query, "user_id": self.user_id, "documents": json.dumps([d.model_dump() for d in self.documents]) } ``` Each key in the returned dict corresponds to a variable name in your prompt messages. For multimodal content and structured arrays, `render()` can return ContentBlock types instead of strings—see [Advanced Render Patterns](#advanced-render-patterns) below. ### Customizing render() You can customize how data is formatted for the LLM: ```python theme={null} class ProductHelpInput(RenderableModel): documents: list[Document] def render(self, **kwargs) -> dict[str, str]: # Format as markdown formatted = "\n".join([ f"## {doc.title}\n{doc.content}" for doc in self.documents ]) return { "documents": formatted } ``` Or use XML formatting: ```python theme={null} def render(self, **kwargs) -> dict[str, str]: docs_xml = "\n".join([ f"\n{doc.content}\n" for doc in self.documents ]) return { "documents": f"\n{docs_xml}\n" } ``` ### Advanced Render Patterns Beyond simple strings, `render()` can return ContentBlock types for multimodal content and arrays for structured context. #### Multimodal Variables Inject images and PDFs directly into your prompts: ```python theme={null} from moxn.base_models.blocks.image import ImageContentFromSource from moxn.base_models.blocks.file import PDFContentFromSource class DocumentAnalysisInput(RenderableModel): query: str document_url: str screenshot_url: str def render(self, **kwargs) -> dict[str, Any]: return { "query": self.query, "document": PDFContentFromSource( url=self.document_url, name="source_document.pdf", ), "screenshot": ImageContentFromSource( url=self.screenshot_url, ), } ``` When the session converts to provider format, these ContentBlocks become the appropriate multimodal content (e.g., `image` and `document` blocks for Anthropic). #### Arrays for Citations Return arrays of ContentBlocks to enable structured citation support. This is particularly useful with Anthropic's citations API, which allows the model to explicitly reference specific chunks of context in its response: ```python theme={null} from moxn.base_models.blocks.text import TextContent class RAGInput(RenderableModel): query: str chunks: list[DocumentChunk] def render(self, **kwargs) -> dict[str, Any]: return { "query": self.query, # Array of TextContent blocks for citations "context_chunks": [ TextContent(text=chunk.text) for chunk in self.chunks ], } ``` When Anthropic's citations feature is enabled, each `TextContent` in the array becomes a citable source. The model's response can then reference specific chunks by index, making it easy to verify which sources informed each part of the response. Arrays of ContentBlocks work with any provider, but citation-aware responses are currently specific to Anthropic's citations API. ## Converting to Provider Format Sessions convert to provider-specific formats using the `to_*_invocation()` methods: ### Anthropic ```python theme={null} from anthropic import Anthropic anthropic = Anthropic() response = anthropic.messages.create( **session.to_anthropic_invocation() ) ``` The invocation includes: * `system`: System message (if present) * `messages`: User/assistant messages * `model`: From prompt's completion\_config * `max_tokens`: From completion\_config * `tools`: If tools are configured * `output_format`: If structured output is configured ### OpenAI ```python theme={null} from openai import OpenAI openai = OpenAI() response = openai.chat.completions.create( **session.to_openai_chat_invocation() ) ``` ### Google ```python theme={null} from google import genai client = genai.Client() response = client.models.generate_content( **session.to_google_gemini_invocation() ) ``` ### Generic method Use `to_invocation()` which automatically selects the provider: ```python theme={null} from moxn.types.content import Provider # Uses completion_config.provider if set payload = session.to_invocation() # Or specify explicitly payload = session.to_invocation(provider=Provider.ANTHROPIC) ``` ### Provider Defaulting When your prompt has `completion_config.provider` set (configured in the Moxn web app), many methods use it automatically: ```python theme={null} # These all use the stored provider from completion_config: payload = session.to_invocation() # Invocation payload payload = session.to_payload() # Messages-only payload parsed = session.parse_response(response) # Response parsing event = session.create_llm_event_from_response(response) # Telemetry # Override when needed: parsed = session.parse_response(response, provider=Provider.OPENAI_CHAT) ``` This simplifies code when you're using the provider configured in the web app, while still allowing runtime overrides. ### Overriding parameters Override model parameters at runtime: ```python theme={null} response = anthropic.messages.create( **session.to_anthropic_invocation( model="claude-sonnet-4-20250514", # Override model max_tokens=4096, # Override max tokens temperature=0.7 # Override temperature ) ) ``` ## Adding Runtime Messages Append messages to a session after creation: ### Add user message ```python theme={null} session.append_user_text( text="Here's additional context...", name="Additional Context" ) ``` ### Add assistant message ```python theme={null} session.append_assistant_text( text="I understand. Let me help with that.", name="Assistant Acknowledgment" ) ``` ### Add from LLM response After getting a response, add it to the session for multi-turn conversations: ```python theme={null} # Parse the response (uses stored provider from completion_config) parsed = session.parse_response(response) # Add to session session.append_assistant_response( parsed_response=parsed, name="Assistant Response" ) # Now add a follow-up user message session.append_user_text("Can you elaborate on that?") # Send again response2 = anthropic.messages.create( **session.to_anthropic_invocation() ) ``` ## Response Parsing Parse provider responses into a normalized format: ```python theme={null} # Get raw response from provider response = anthropic.messages.create(...) # Parse to normalized format (uses stored provider from completion_config) parsed = session.parse_response(response) # Or override the provider explicitly # parsed = session.parse_response(response, provider=Provider.ANTHROPIC) # Access normalized content for candidate in parsed.candidates: for block in candidate.content: if block.block_type == "text": print(block.text) elif block.block_type == "tool_call": print(f"Tool: {block.tool_name}({block.input})") # Access metadata print(f"Tokens: {parsed.input_tokens} in, {parsed.output_tokens} out") print(f"Model: {parsed.model}") print(f"Stop reason: {parsed.stop_reason}") ``` ## Creating Telemetry Events Create LLM events from responses for logging: ```python theme={null} # Method 1: From raw response (uses stored provider from completion_config) llm_event = session.create_llm_event_from_response(response) # Or override the provider explicitly # llm_event = session.create_llm_event_from_response(response, provider=Provider.ANTHROPIC) # Method 2: From parsed response (with more control) parsed = session.parse_response(response) llm_event = session.create_llm_event_from_parsed_response( parsed_response=parsed, request_config=request_config, # Optional schema_definition=schema, # Optional attributes={"custom": "data"}, # Optional validation_errors=errors # Optional ) # Log it async with client.span(session) as span: await client.log_telemetry_event(llm_event) ``` ## Session Properties Access session information: ```python theme={null} session.id # UUID - unique session identifier session.prompt_id # UUID - source prompt ID session.prompt # PromptTemplate - the underlying prompt session.messages # list[Message] - current messages (with appended) session.session_data # RenderableModel | None - your input data ``` ## Complete Example Here's a full multi-turn conversation example: ```python theme={null} from moxn import MoxnClient from moxn.types.content import Provider from anthropic import Anthropic from generated_models import ChatInput async def chat_conversation(): async with MoxnClient() as client: # Create initial session session = await client.create_prompt_session( prompt_id="chat-prompt-id", branch_name="main", session_data=ChatInput( user_name="Alice", system_context="You are a helpful assistant." ) ) anthropic = Anthropic() # First turn session.append_user_text("What's the weather like today?") async with client.span(session, name="turn_1") as span: response1 = anthropic.messages.create( **session.to_anthropic_invocation() ) await client.log_telemetry_event_from_response( session, response1, Provider.ANTHROPIC ) # Add response to session parsed1 = session.parse_response(response1) session.append_assistant_response(parsed1) # Second turn session.append_user_text("What about tomorrow?") async with client.span(session, name="turn_2") as span: response2 = anthropic.messages.create( **session.to_anthropic_invocation() ) await client.log_telemetry_event_from_response( session, response2, Provider.ANTHROPIC ) return response2.content[0].text ``` ## Next Steps Deep dive into provider-specific handling Generate type-safe session data models Set up observability for sessions Understand how variables work # The Moxn Workflow Source: https://moxn.mintlify.app/guides/workflow The end-to-end workflow for building with Moxn This guide covers the complete development workflow with Moxn—from creating prompts in the web app to deploying type-safe LLM applications with full observability. ## The Development Cycle ```mermaid theme={null} flowchart LR A[CREATE: Prompts in Web App] --> B[GENERATE: Type-safe Models] B --> C[USE: Prompts in Your Code] C --> D[LOG: Telemetry to Moxn] ``` ## Step 1: Create Prompts in the Web App ### Create a Task A **Task** is a container for related prompts—think of it like a Git repository. Create one for each distinct AI feature in your application. Tasks list Tasks contain related prompts, schemas, and traces: * **Customer Support Bot** (Task) * Product Help (Prompt) * Query Classification (Prompt) * Escalation Handler (Prompt) Task detail ### Add Messages and Variables Each prompt contains **messages** with roles (system, user, assistant). Insert **variables** using the `/variable` slash command in the editor, which opens a property editor. Message editor with variables Variables are typed properties—not template strings. When you insert a variable: 1. Type `/variable` in the message editor 2. The **Property Editor** opens where you configure the variable 3. Set the name, type (string, array, object, image-url, etc.), and optional schema reference 4. The variable appears as a styled block in your message Property editor Variables automatically sync to the prompt's **Input Schema**—the typed interface your code will use: Prompt input schema ### Commit Your Changes When you're happy with your prompts, commit them. This creates an immutable snapshot you can reference by commit ID in production. ## Step 2: Generate Type-Safe Models Generate Pydantic models from your prompt schemas: ```python theme={null} import asyncio from moxn import MoxnClient async def generate(): async with MoxnClient() as client: await client.generate_task_models( task_id="your-task-id", branch_name="main", output_dir="./generated_models" ) asyncio.run(generate()) ``` This creates a Python file with models for each prompt: ```python theme={null} # generated_models/customer_support_bot_models.py class ProductHelpInput(RenderableModel): """Input schema for Product Help prompt.""" company_name: str customer_name: str query: str search_results: list[SearchResult] def render(self, **kwargs) -> dict[str, str]: return { "company_name": self.company_name, "customer_name": self.customer_name, "query": self.query, "search_results": json.dumps([r.model_dump() for r in self.search_results]), } ``` **Codegen is optional.** You can always define models manually—especially useful when iterating on prompts in a notebook or during early development. Codegen shines when you want to ensure your models stay in sync with your prompt schemas, and integrates well into CI/CD pipelines (similar to database migrations or OpenAPI client generation). You don't need generated models to use Moxn. Define your input model manually: ```python theme={null} from moxn.types.base import RenderableModel class MyInput(RenderableModel): query: str context: str def render(self, **kwargs) -> dict[str, str]: return {"query": self.query, "context": self.context} # Use it directly session = await client.create_prompt_session( prompt_id="...", session_data=MyInput(query="Hello", context="Some context") ) ``` This is often the fastest way to iterate when you're actively editing prompts and experimenting with different variable structures. ## Step 3: Use Prompts in Your Code Now use the generated models with the SDK: ```python theme={null} from moxn import MoxnClient from moxn.types.content import Provider from generated_models.customer_support_bot_models import ProductHelpInput from anthropic import Anthropic async def handle_support_query(customer_name: str, query: str): async with MoxnClient() as client: # Create session with type-safe input session = await client.create_prompt_session( prompt_id="product-help-prompt-id", branch_name="main", # Use commit_id in production session_data=ProductHelpInput( company_name="Acme Corp", customer_name=customer_name, query=query, search_results=await search_knowledge_base(query) ) ) # Send to LLM anthropic = Anthropic() response = anthropic.messages.create( **session.to_anthropic_invocation() ) return response.content[0].text ``` ### Branch vs Commit Access | Pattern | When to Use | Example | | -------------------- | -------------------- | ------------------ | | `branch_name="main"` | Development, testing | Always gets latest | | `commit_id="abc123"` | Production | Immutable, pinned | ```python theme={null} # Development: always get latest session = await client.create_prompt_session( prompt_id="...", branch_name="main" ) # Production: pin to specific commit session = await client.create_prompt_session( prompt_id="...", commit_id="abc123def456" ) ``` ## Step 4: Log Telemetry Log every LLM interaction for debugging, analysis, and compliance: ```python theme={null} async def handle_support_query(customer_name: str, query: str): async with MoxnClient() as client: session = await client.create_prompt_session(...) # Wrap your LLM call in a span with searchable metadata async with client.span( session, name="support_response", metadata={ "customer_name": customer_name, "query_type": classify_query(query) } ) as span: # Make the LLM call response = anthropic.messages.create( **session.to_anthropic_invocation() ) # Log the event await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) return response.content[0].text ``` ### What Gets Logged Each telemetry event captures: * **Session data**: The typed input you provided * **Rendered input**: The flattened string values injected into the prompt * **Messages**: The complete prompt sent to the LLM * **Response**: The raw LLM response * **Metadata**: Span attributes, token counts, latency ## Viewing Results After logging telemetry, view your traces in the Moxn web app: 1. Navigate to your Task 2. Open the **Traces** tab 3. Filter by time range, prompt, or custom attributes 4. Click a trace to see the full span hierarchy Traces list You'll see: * Complete input/output for each LLM call * Token usage and costs * Latency breakdowns * Custom attributes for filtering ## Iterating on Prompts The workflow creates a tight feedback loop: 1. **Observe**: Review traces to see how prompts perform in production 2. **Branch**: Create a branch for experimentation 3. **Edit**: Modify prompts in the web app 4. **Test**: Use branch access to test changes 5. **Commit**: When satisfied, commit and update production ```python theme={null} # Test a branch session = await client.create_prompt_session( prompt_id="...", branch_name="experiment-new-tone" # Your feature branch ) # Deploy to production session = await client.create_prompt_session( prompt_id="...", commit_id="new-commit-id" # After committing the branch ) ``` ## Next Steps Learn the details of fetching and caching prompts Understand sessions and variable rendering Convert to Anthropic, OpenAI, and Google formats Deep dive into model generation # Moxn Source: https://moxn.mintlify.app/index Version, render, and observe your LLM prompts ```mermaid theme={null} flowchart LR A[Author] --> B[Generate] B --> C[Use] C --> D[Observe] ``` Build prompts with typed variables, structured content, and Git-like versioning. Run codegen to get Pydantic models with autocomplete and validation for your LLM invocations. Fetch prompts, inject your context, get provider specific dialects prepared, no more shoe horning. Log traces and review them in the same editor you authored in. ## Quick Example ```python theme={null} from moxn import MoxnClient from anthropic import Anthropic async with MoxnClient() as client: # Fetch prompt and inject your data session = await client.create_prompt_session( prompt_id="support-agent", session_data=SupportInput(query="How do I reset my password?") ) # Send to provider response = Anthropic().messages.create( **session.to_anthropic_invocation() ) # Log for observability await client.log_telemetry_event_from_response(session, response) ``` Install and run your first prompt The problems we solve **For AI tools:** This documentation is available as [llms.txt](/llms.txt) and [llms-full.txt](/llms-full.txt) for LLM consumption. # llms.txt Source: https://moxn.mintlify.app/llms-txt Machine-readable documentation for AI tools This documentation is optimized for AI consumption through industry-standard llms.txt files. ## Available Files Index of all documentation pages with descriptions Complete documentation content in a single file ## What is llms.txt? The `llms.txt` file is an industry standard that helps LLMs index documentation content more efficiently. It contains: * Site title and description * A structured list of all pages with their descriptions * Links to each page in the documentation The `llms-full.txt` file combines the entire documentation site into a single file, making it easy for AI tools to ingest all content at once. ## Usage You can access these files by appending `/llms.txt` or `/llms-full.txt` to the documentation URL. AI assistants like Claude, ChatGPT, and Cursor can use these files to better understand and reference the Moxn SDK documentation. # Quick Start Source: https://moxn.mintlify.app/quickstart Get up and running with Moxn in 5 minutes This guide walks you through installing the SDK, fetching a prompt, and making your first LLM call with telemetry. ## Prerequisites * Python 3.10+ * A Moxn account and API key (get one at [moxn.dev](https://moxn.dev)) * An LLM provider API key (Anthropic, OpenAI, or Google) ## Installation Install the Moxn SDK using pip: ```bash theme={null} pip install moxn ``` Set your API key as an environment variable: ```bash theme={null} export MOXN_API_KEY="your-api-key" ``` ## Your First Moxn Call Here's a complete example that fetches a prompt, creates a session, sends it to Claude, and logs the interaction: ```python Anthropic theme={null} import asyncio from moxn import MoxnClient from moxn.types.content import Provider from anthropic import Anthropic async def main(): # Initialize the Moxn client async with MoxnClient() as client: # Fetch a prompt from your task # Use branch_name for development, commit_id for production prompt = await client.get_prompt( prompt_id="your-prompt-id", branch_name="main" ) # Create a session with your input data session = await client.create_prompt_session( prompt_id="your-prompt-id", branch_name="main", session_data=YourPromptInput( ragItems=[ ragItem( title="Best Document", content="The answer to the user's query" ) ] ) ) # Convert to Anthropic format and send anthropic = Anthropic() response = anthropic.messages.create( **session.to_anthropic_invocation() ) print(response.content[0].text) # Log telemetry async with client.span(session) as span: await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) asyncio.run(main()) ``` ```python OpenAI theme={null} import asyncio from moxn import MoxnClient from moxn.types.content import Provider from openai import OpenAI async def main(): # Initialize the Moxn client async with MoxnClient() as client: # Fetch a prompt from your task prompt = await client.get_prompt( prompt_id="your-prompt-id", branch_name="main" ) # Create a session with your input data session = await client.create_prompt_session( prompt_id="your-prompt-id", branch_name="main", session_data=None # Replace with your codegen'd model ) # Convert to OpenAI format and send openai = OpenAI() response = openai.chat.completions.create( **session.to_openai_chat_invocation() ) print(response.choices[0].message.content) # Log telemetry async with client.span(session) as span: await client.log_telemetry_event_from_response( session, response, Provider.OPENAI_CHAT ) asyncio.run(main()) ``` ```python Google theme={null} import asyncio from moxn import MoxnClient from moxn.types.content import Provider from google import genai async def main(): # Initialize the Moxn client async with MoxnClient() as client: # Create a session with your input data session = await client.create_prompt_session( prompt_id="your-prompt-id", branch_name="main", session_data=None # Replace with your codegen'd model ) # Convert to Google format and send google_client = genai.Client() response = google_client.models.generate_content( **session.to_google_gemini_invocation() ) print(response.text) # Log telemetry async with client.span(session) as span: await client.log_telemetry_event_from_response( session, response, Provider.GOOGLE_GEMINI ) asyncio.run(main()) ``` ## From Template to Provider Call The code above follows the core Moxn pattern (see [Core Concepts](/index#core-concepts)): | Step | What Happens | | ----------------------- | ---------------------------------------------------------------- | | **1. Fetch template** | Your prompt (messages, variables, config) is retrieved from Moxn | | **2. Create session** | Template + your `session_data` = a session ready to render | | **3. Build invocation** | `to_anthropic_invocation()` returns a plain Python dict | | **4. Call provider** | You pass the dict to the provider SDK with `**invocation` | ### You Control the Payload The invocation is just a dictionary—you can inspect, modify, or extend it: ```python theme={null} invocation = session.to_anthropic_invocation() # Add streaming invocation["stream"] = True # Use a new provider feature invocation["extra_headers"] = {"anthropic-beta": "citations-2025-01-01"} # Override settings for A/B testing invocation["model"] = "claude-sonnet-4-20250514" response = anthropic.messages.create(**invocation) ``` This design is intentional: Moxn helps you **build payloads**, but never **owns the integration**. You always call the provider SDK directly—no wrapper, no middleware, no magic. If a provider releases a new feature tomorrow, you can use it immediately by adding parameters to the dict or to the provider directly. Moxn can help you build the provider specific payload. ## Understanding the Code Let's break down what's happening: ### 1. MoxnClient as Context Manager ```python theme={null} async with MoxnClient() as client: ``` The client manages connections and telemetry batching. Always use it as an async context manager to ensure proper cleanup. ### 2. Fetching Prompts ```python theme={null} prompt = await client.get_prompt( prompt_id="your-prompt-id", branch_name="main" # or commit_id="abc123" for production ) ``` * **Branch access** (`branch_name`): Gets the latest version, including uncommitted changes. Use for development. * **Commit access** (`commit_id`): Gets an immutable snapshot. Use for production. ### 3. Creating Sessions ```python theme={null} prompt_session = await client.create_prompt_session( prompt_id="your-prompt-id", branch_name="main", session_data=YourInputModel(...) # Pydantic model from codegen ) ``` A (prompt) session combines your prompt template with runtime data. The `session_data` is typically a Pydantic model generated by codegen. The (prompt) session holds the message history - you can append additional messages or context, append an LLM response followed by additional user messages. It maintains the conversation history for the session. Each telemetry loggign call will log the session independently. ### 4. Converting to Provider Format ```python theme={null} response = anthropic.messages.create( **prompt_session.to_anthropic_invocation() ) ``` The `to_*_invocation()` methods return complete payloads you can unpack directly into provider SDKs. They include: * Messages formatted for the provider * Model configuration from your prompt * Tools and structured output schemas (if configured) ### 5. Logging Telemetry ```python theme={null} async with client.span(session) as span: await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) ``` Spans create observable traces of your LLM calls. Every call within a span is linked for debugging and analysis. ## Using Code Generation For type-safe session data, generate Pydantic models from your prompts: ```python theme={null} # Generate models for all prompts in a task async with MoxnClient() as client: await client.generate_task_models( task_id="your-task-id", branch_name="main", output_dir="./models" ) ``` This creates a Python file with Pydantic models matching your prompt's input schema: ```python theme={null} # models/your_task_models.py (generated) from datetime import datetime from typing import TypedDict from pydantic import BaseModel from moxn.types.base import RenderableModel class DocumentRendered(TypedDict): """Flattened string representation for prompt template injection.""" title: str created_at: str last_modified: str author: str content: str class Document(BaseModel): title: str created_at: datetime last_modified: datetime | None = None author: str content: str def render(self, **kwargs) -> DocumentRendered: """Render to flattened dictionary for prompt variable substitution.""" result: DocumentRendered = { "title": self.title, "created_at": self.created_at.isoformat(), "last_modified": self.last_modified.isoformat() if self.last_modified else "", "author": self.author, "content": self.content, } return result class YourPromptInputRendered(TypedDict): """Flattened representation - keys match your prompt's variable blocks.""" query: str user_id: str context: str class YourPromptInput(RenderableModel): query: str user_id: str context: list[Document] | None = None def render(self, **kwargs) -> YourPromptInputRendered: # Render context as XML document collection if self.context: doc_xmls = [] for doc in self.context: data = doc.render(**kwargs) # Returns DocumentRendered attrs = f'title="{data["title"]}" author="{data["author"]}" created_at="{data["created_at"]}"' if data["last_modified"]: attrs += f' last_modified="{data["last_modified"]}"' doc_xmls.append(f"\n{data['content']}\n") context_str = "\n" + "\n".join(doc_xmls) + "\n" else: context_str = "" return { "query": self.query, "user_id": self.user_id, "context": context_str, } ``` The `render()` method transforms your typed data into strings for prompt injection. This example renders documents as XML—a format that works well for providing structured context to LLMs. Then use it in your code: ```python theme={null} from models.your_task_models import YourPromptInput, Document from datetime import datetime session = await client.create_prompt_session( prompt_id="your-prompt-id", session_data=YourPromptInput( query="How do I reset my password?", user_id="user_123", context=[ Document( title="Password Reset Guide", created_at=datetime(2024, 1, 15), author="Support Team", content="To reset your password, click 'Forgot Password' on the login page..." ), Document( title="Account Security FAQ", created_at=datetime(2024, 2, 1), last_modified=datetime(2024, 3, 10), author="Security Team", content="We recommend using a password manager and enabling 2FA..." ) ] ) ) ``` This renders into the prompt as: ```xml theme={null} To reset your password, click 'Forgot Password' on the login page... We recommend using a password manager and enabling 2FA... ``` ### The Render Pipeline When you create a prompt session, your typed data transforms through several stages: ``` ┌─────────────────────────────────────────────────────────────────────────┐ │ YOUR CODE │ │ ───────── │ │ YourPromptInput( ← Pydantic BaseModel │ │ query="How do I reset...", (typed, validated) │ │ user_id="user_123", │ │ context=[Document(...), ...] │ │ ) │ └─────────────────────────────────────────────────────────────────────────┘ │ │ .render(**kwargs) ▼ ┌─────────────────────────────────────────────────────────────────────────┐ │ RENDERED REPRESENTATION │ │ ─────────────────────── │ │ YourPromptInputRendered = { ← TypedDict (all string values) │ │ "query": "How do I reset...", │ │ "user_id": "user_123", │ │ "context": "...", │ │ } │ └─────────────────────────────────────────────────────────────────────────┘ │ │ to_anthropic_invocation() │ (variables matched by name) ▼ ┌─────────────────────────────────────────────────────────────────────────┐ │ PROVIDER PAYLOAD │ │ ──────────────── │ │ { │ │ "model": "claude-sonnet-4-20250514", │ │ "messages": [ │ │ {"role": "user", "content": "How do I reset... ..."} │ │ ], │ │ ... │ │ } │ └─────────────────────────────────────────────────────────────────────────┘ ``` ### How It Works When you create a prompt session with `session_data`, the SDK: 1. **Stores your typed model** — The Pydantic instance you pass to `create_prompt_session()` 2. **Calls `render()` at invocation time** — When you call `to_anthropic_invocation()` (or other providers) 3. **Substitutes variables by name** — Each key in the rendered dict matches a `{{variable}}` block in your prompt ```python theme={null} # Your code session = await client.create_prompt_session( prompt_id="your-prompt-id", session_data=YourPromptInput(...) # ← Stored as-is ) # When you call this, render() is invoked automatically invocation = session.to_anthropic_invocation() # session_data.render() → YourPromptInputRendered → variable substitution ``` **Telemetry captures both representations**: * **Session data**: Your original typed model (enables re-rendering with different logic) * **Rendered input**: The flattened strings that were injected into the prompt **Why Two Representations?** The dual-representation pattern serves distinct purposes: | Representation | Type | Purpose | | ---------------------------- | ---------------- | -------------------------------------------------------------------------------------- | | **BaseModel** (session data) | Pydantic model | Type-safe data structure with validation, rich types (datetime, nested objects, lists) | | **\*Rendered** (TypedDict) | `dict[str, str]` | Flat string values ready for template injection | This separation enables: * **Re-rendering**: Change how data is formatted without changing the data itself * **Telemetry**: Log the structured input separately from the rendered output * **Testing**: Compare different rendering strategies using the same session data ## Next Steps Understand the full development workflow Learn more about sessions and rendering Deep dive into type-safe model generation Set up comprehensive observability # MoxnClient Source: https://moxn.mintlify.app/reference/client API reference for the MoxnClient class The `MoxnClient` is your main entry point for interacting with the Moxn platform. It handles authentication, fetching prompts, creating sessions, managing telemetry, and code generation. ## Usage ```python theme={null} from moxn import MoxnClient async with MoxnClient() as client: session = await client.create_prompt_session( prompt_id="your-prompt-id", branch_name="main" ) ``` The client automatically uses `MOXN_API_KEY` from your environment. ## Fetching Content ### get\_prompt Fetch a prompt template with optional caching. ```python theme={null} async def get_prompt( prompt_id: UUID | str, branch_name: str | None = None, commit_id: str | None = None, ) -> PromptTemplate ``` **Parameters:** | Name | Type | Description | | ------------- | ------------- | --------------------------------------------------------------------- | | `prompt_id` | `UUID \| str` | The prompt's anchor ID | | `branch_name` | `str \| None` | Branch name (mutually exclusive with commit\_id) | | `commit_id` | `str \| None` | Commit ID for immutable access (mutually exclusive with branch\_name) | **Returns:** `PromptTemplate` **Caching Behavior:** * **Commit access**: Cached indefinitely (immutable) * **Branch access**: Always fetches latest (mutable) ```python theme={null} # Development: get latest from branch prompt = await client.get_prompt("prompt-id", branch_name="main") # Production: pin to specific commit prompt = await client.get_prompt("prompt-id", commit_id="abc123") ``` ### get\_task Fetch an entire task with all its prompts and schemas. ```python theme={null} async def get_task( task_id: str, branch_name: str | None = None, commit_id: str | None = None, ) -> Task ``` **Parameters:** | Name | Type | Description | | ------------- | ------------- | -------------------- | | `task_id` | `str` | The task's anchor ID | | `branch_name` | `str \| None` | Branch name | | `commit_id` | `str \| None` | Commit ID | **Returns:** `Task` ```python theme={null} task = await client.get_task("task-id", branch_name="main") for prompt in task.prompts: print(f"Prompt: {prompt.name}") ``` ### get\_branch\_head Get the head commit for a branch. Useful for determining deployment versions. ```python theme={null} async def get_branch_head( task_id: str, branch_name: str = "main" ) -> BranchHeadResponse ``` **Returns:** `BranchHeadResponse` with: * `effective_commit_id`: The commit ID to use * `has_uncommitted_changes`: Whether there are pending changes * `last_committed_at`: Timestamp of last commit *** ## Creating Sessions ### create\_prompt\_session Create a new prompt session by fetching a prompt and combining it with session data. ```python theme={null} async def create_prompt_session( prompt_id: str, branch_name: str | None = None, commit_id: str | None = None, session_data: RenderableModel | None = None, ) -> PromptSession ``` **Parameters:** | Name | Type | Description | | -------------- | ------------------------- | ---------------------------------------- | | `prompt_id` | `str` | The prompt's anchor ID | | `branch_name` | `str \| None` | Branch name | | `commit_id` | `str \| None` | Commit ID | | `session_data` | `RenderableModel \| None` | Pydantic model for variable substitution | **Returns:** `PromptSession` ```python theme={null} from models.my_task_models import QueryInput session = await client.create_prompt_session( prompt_id="prompt-id", branch_name="main", session_data=QueryInput( query="What is the weather?", user_name="Alice" ) ) ``` ### prompt\_session\_from\_session\_data Create a session using the prompt ID embedded in the session data's metadata. ```python theme={null} async def prompt_session_from_session_data( session_data: RenderableModel, branch_name: str | None = None, commit_id: str | None = None, ) -> PromptSession ``` This method reads the `prompt_id` from `session_data.moxn_schema_metadata`, so you don't need to specify it separately. ```python theme={null} # Session data knows which prompt it belongs to session = await client.prompt_session_from_session_data( session_data=QueryInput(query="Hello"), branch_name="main" ) ``` *** ## Telemetry & Spans ### span Create a span for tracing and observability. ```python theme={null} @asynccontextmanager async def span( prompt_session: PromptSession, name: str | None = None, metadata: dict[str, Any] | None = None, *, parent_context: SpanContext | None = None, trace_context: TraceContext | None = None, ) -> AsyncGenerator[Span, None] ``` **Parameters:** | Name | Type | Description | | ---------------- | ---------------------- | ------------------------------------------------------- | | `prompt_session` | `PromptSession` | The session for this span | | `name` | `str \| None` | Span name (defaults to prompt name) | | `metadata` | `dict \| None` | Searchable attributes (customer\_id, request\_id, etc.) | | `parent_context` | `SpanContext \| None` | Explicit parent for async patterns | | `trace_context` | `TraceContext \| None` | For distributed tracing | **Returns:** `AsyncGenerator[Span, None]` ```python theme={null} async with client.span( session, name="process_query", metadata={ "customer_id": "cust_123", "status": "processing" } ) as span: response = anthropic.messages.create(**session.to_anthropic_invocation()) await client.log_telemetry_event_from_response(session, response, Provider.ANTHROPIC) ``` ### span\_from\_carrier Create a span from a trace carrier for distributed tracing. ```python theme={null} @asynccontextmanager async def span_from_carrier( carrier: MoxnTraceCarrier, name: str | None = None, metadata: dict[str, Any] | None = None, ) -> AsyncGenerator[Span, None] ``` Use this in queue workers or callback handlers to continue a trace. ```python theme={null} # In a queue worker carrier = MoxnTraceCarrier.model_validate(message["carrier"]) async with client.span_from_carrier(carrier, name="process_item") as span: await process(message["data"]) ``` ### extract\_context Extract the current span context for propagation across services. ```python theme={null} def extract_context() -> MoxnTraceCarrier | None ``` **Returns:** `MoxnTraceCarrier` if there's an active span, `None` otherwise. ```python theme={null} async with client.span(session) as span: carrier = client.extract_context() if carrier: await queue.put({ "carrier": carrier.model_dump(mode="json"), "data": payload }) ``` ### log\_telemetry\_event Log an LLM event to the current span. ```python theme={null} async def log_telemetry_event(event: LLMEvent) -> None ``` ```python theme={null} event = session.create_llm_event_from_parsed_response(parsed_response) await client.log_telemetry_event(event) ``` ### log\_telemetry\_event\_from\_response Convenience method to parse a provider response and log it in one call. ```python theme={null} async def log_telemetry_event_from_response( prompt_session: PromptSession, response: AnthropicMessage | OpenAIChatCompletion | GoogleGenerateContentResponse, provider: Provider, ) -> None ``` **Parameters:** | Name | Type | Description | | ---------------- | ----------------- | ---------------------------------- | | `prompt_session` | `PromptSession` | The session used for the request | | `response` | Provider response | Raw response from the LLM provider | | `provider` | `Provider` | The provider enum value | ```python theme={null} response = anthropic.messages.create(**session.to_anthropic_invocation()) await client.log_telemetry_event_from_response(session, response, Provider.ANTHROPIC) ``` ### flush Await in-flight telemetry logs. Call this at process exit or Lambda return. ```python theme={null} async def flush(timeout: float | None = None) -> None ``` ```python theme={null} # At shutdown await client.flush(timeout=5.0) ``` *** ## Code Generation ### generate\_task\_models Generate Pydantic models from all schemas in a task. ```python theme={null} async def generate_task_models( task_id: str | UUID, branch_name: str | None = None, commit_id: str | None = None, output_dir: Path | str | None = None, ) -> DatamodelCodegenResponse ``` **Parameters:** | Name | Type | Description | | ------------- | --------------------- | --------------------------------- | | `task_id` | `str \| UUID` | The task ID | | `branch_name` | `str \| None` | Branch name (defaults to "main") | | `commit_id` | `str \| None` | Commit ID | | `output_dir` | `Path \| str \| None` | Directory to write generated code | **Returns:** `DatamodelCodegenResponse` with generated code ```python theme={null} # Generate and save models response = await client.generate_task_models( task_id="task-id", branch_name="main", output_dir="./models" ) print(f"Generated: {response.filename}") ``` *** ## Task & Prompt Creation ### create\_task Create a new task programmatically. ```python theme={null} async def create_task( name: str, description: str | None = None, branch_name: str = "main", ) -> Task ``` ```python theme={null} task = await client.create_task( name="Customer Support Bot", description="Handles customer inquiries" ) ``` ### create\_prompt Create a new prompt with messages. ```python theme={null} async def create_prompt( task_id: str | UUID, name: str, messages: list[MessageData | dict], description: str | None = None, branch_name: str = "main", ) -> PromptTemplate ``` ```python theme={null} from moxn.types.requests import MessageData from moxn.types.content import MessageRole from moxn.types.blocks.text import TextContentModel messages = [ MessageData( name="System", role=MessageRole.SYSTEM, blocks=[[TextContentModel(text="You are helpful.")]] ) ] prompt = await client.create_prompt( task_id=task.id, name="Q&A Prompt", messages=messages ) ``` *** ## Lifecycle Methods ### close Close the underlying HTTP client. ```python theme={null} async def close() -> None ``` ### verify\_access Verify API key and return identity information. ```python theme={null} async def verify_access() -> dict ``` ```python theme={null} info = await client.verify_access() print(f"Tenant: {info['tenant_id']}") ``` # PromptSession Source: https://moxn.mintlify.app/reference/session API reference for the PromptSession class The `PromptSession` is the runtime representation of a prompt template combined with session data. It handles variable substitution, provider conversion, and response parsing. ## Creation Sessions are created from prompt templates using the client: ```python theme={null} session = await client.create_prompt_session( prompt_id="prompt-id", branch_name="main", session_data=QueryInput(query="Hello") ) ``` Or directly from a template: ```python theme={null} session = PromptSession.from_prompt_template( prompt=prompt_template, session_data=QueryInput(query="Hello") ) ``` ## Properties | Property | Type | Description | | -------------- | ------------------------- | ------------------------------------------ | | `id` | `UUID` | Unique session identifier | | `prompt` | `PromptTemplate` | The underlying prompt template | | `prompt_id` | `UUID` | Shortcut to `prompt.id` | | `messages` | `list[Message]` | Current message list | | `session_data` | `RenderableModel \| None` | The session data for variable substitution | *** ## Provider Conversion These methods convert the session to provider-specific formats for direct SDK usage. ### to\_anthropic\_invocation Convert to complete Anthropic API payload with model parameters. ```python theme={null} def to_anthropic_invocation( context: MessageContext | dict | None = None, *, model: str | None = None, max_tokens: int | None = None, temperature: float | None = None, top_p: float | None = None, thinking: dict[str, Any] | None = None, ) -> AnthropicInvocationParam ``` **Parameters:** | Name | Type | Description | | ------------- | -------------------------------- | ------------------------------------------------- | | `context` | `MessageContext \| dict \| None` | Additional context (merged with session\_data) | | `model` | `str \| None` | Model override (e.g., "claude-sonnet-4-20250514") | | `max_tokens` | `int \| None` | Max tokens override | | `temperature` | `float \| None` | Temperature override | | `top_p` | `float \| None` | Top-p override | | `thinking` | `dict \| None` | Extended thinking configuration | **Returns:** Complete payload ready for `**` unpacking. ```python theme={null} response = anthropic.messages.create( **session.to_anthropic_invocation() ) # With overrides response = anthropic.messages.create( **session.to_anthropic_invocation( model="claude-sonnet-4-20250514", max_tokens=1024 ) ) ``` **Automatic inclusions:** * Tools (if configured in prompt) * Structured output format (if response schema configured) * Model parameters from `completion_config` For structured outputs, add the beta header manually: ```python theme={null} extra_headers={"anthropic-beta": "structured-outputs-2025-11-13"} ``` ### to\_openai\_chat\_invocation Convert to complete OpenAI Chat API payload. ```python theme={null} def to_openai_chat_invocation( context: MessageContext | dict | None = None, *, model: str | None = None, max_tokens: int | None = None, temperature: float | None = None, top_p: float | None = None, thinking: dict[str, Any] | None = None, ) -> OpenAIChatInvocationParam ``` ```python theme={null} response = openai.chat.completions.create( **session.to_openai_chat_invocation() ) ``` ### to\_openai\_responses\_invocation Convert to OpenAI Responses API payload. ```python theme={null} def to_openai_responses_invocation( context: MessageContext | dict | None = None, *, model: str | None = None, max_tokens: int | None = None, temperature: float | None = None, top_p: float | None = None, thinking: dict[str, Any] | None = None, ) -> OpenAIResponsesInvocationParam ``` ```python theme={null} response = openai.responses.create( **session.to_openai_responses_invocation() ) ``` ### to\_google\_gemini\_invocation Convert to Google Gemini API payload. ```python theme={null} def to_google_gemini_invocation( context: MessageContext | dict | None = None, *, model: str | None = None, max_tokens: int | None = None, temperature: float | None = None, top_p: float | None = None, thinking: dict[str, Any] | None = None, ) -> GoogleInvocationParam ``` ```python theme={null} response = client.models.generate_content( **session.to_google_gemini_invocation() ) ``` ### to\_google\_vertex\_invocation Convert to Google Vertex AI payload. ```python theme={null} def to_google_vertex_invocation( context: MessageContext | dict | None = None, *, model: str | None = None, max_tokens: int | None = None, temperature: float | None = None, top_p: float | None = None, thinking: dict[str, Any] | None = None, ) -> GoogleInvocationParam ``` ### to\_invocation Generic method that auto-selects provider based on `completion_config.provider`. ```python theme={null} def to_invocation( context: MessageContext | dict | None = None, *, provider: Provider | None = None, model: str | None = None, max_tokens: int | None = None, temperature: float | None = None, top_p: float | None = None, thinking: dict[str, Any] | None = None, ) -> ProviderInvocationPayload ``` *** ## Message-Only Conversion These methods return just the messages without model parameters. ### to\_anthropic\_messages ```python theme={null} def to_anthropic_messages( context: MessageContext | dict | None = None ) -> AnthropicMessagesParam ``` Returns `{"system": ..., "messages": [...]}`. ### to\_openai\_chat\_messages ```python theme={null} def to_openai_chat_messages( context: MessageContext | dict | None = None ) -> OpenAIChatMessagesParam ``` Returns `{"messages": [...]}`. ### to\_openai\_responses\_messages ```python theme={null} def to_openai_responses_messages( context: MessageContext | dict | None = None ) -> OpenAIResponsesMessagesParam ``` Returns `{"input": [...], "instructions": ...}`. ### to\_google\_gemini\_messages ```python theme={null} def to_google_gemini_messages( context: MessageContext | dict | None = None ) -> GoogleMessagesParam ``` Returns `{"system_instruction": ..., "content": [...]}`. ### to\_messages Generic method for any provider. Uses stored `completion_config.provider` by default: ```python theme={null} def to_messages( provider: Provider | None = None, context: MessageContext | dict | None = None, ) -> ProviderMessagesParam ``` ```python theme={null} # Uses stored provider from completion_config messages = session.to_messages() # Or override explicitly messages = session.to_messages(provider=Provider.ANTHROPIC) ``` ### to\_payload Generic method for any provider. Uses stored `completion_config.provider` by default: ```python theme={null} def to_payload( provider: Provider | None = None, context: MessageContext | dict | None = None, ) -> ProviderPayload ``` ```python theme={null} # Uses stored provider from completion_config payload = session.to_payload() # Or override explicitly payload = session.to_payload(provider=Provider.ANTHROPIC) ``` *** ## Response Handling ### parse\_response Parse a provider response into normalized format. Uses stored `completion_config.provider` by default: ```python theme={null} def parse_response( response: Any, provider: Provider | None = None, ) -> ParsedResponse ``` ```python theme={null} response = anthropic.messages.create(**session.to_anthropic_invocation()) # Uses stored provider from completion_config parsed = session.parse_response(response) # Or override explicitly parsed = session.parse_response(response, provider=Provider.ANTHROPIC) # Access normalized content for candidate in parsed.candidates: for block in candidate.content_blocks: if isinstance(block, TextContent): print(block.text) ``` ### create\_llm\_event\_from\_response Create an LLM event for telemetry from a raw provider response. Uses stored `completion_config.provider` by default: ```python theme={null} def create_llm_event_from_response( response: AnthropicMessage | OpenAIChatCompletion | GoogleGenerateContentResponse, provider: Provider | None = None, ) -> LLMEvent ``` ```python theme={null} response = anthropic.messages.create(**session.to_anthropic_invocation()) # Uses stored provider from completion_config event = session.create_llm_event_from_response(response) await client.log_telemetry_event(event) # Or override explicitly event = session.create_llm_event_from_response(response, provider=Provider.ANTHROPIC) ``` ### create\_llm\_event\_from\_parsed\_response Create an LLM event from an already-parsed response with additional metadata. ```python theme={null} def create_llm_event_from_parsed_response( parsed_response: ParsedResponse, request_config: RequestConfig | None = None, schema_definition: SchemaDefinition | None = None, attributes: dict[str, Any] | None = None, validation_errors: list[str] | None = None, ) -> LLMEvent ``` **Parameters:** | Name | Type | Description | | ------------------- | -------------------------- | --------------------------------------------- | | `parsed_response` | `ParsedResponse` | The parsed response | | `request_config` | `RequestConfig \| None` | Request configuration used | | `schema_definition` | `SchemaDefinition \| None` | Schema or tool definitions | | `attributes` | `dict \| None` | Custom attributes | | `validation_errors` | `list[str] \| None` | Validation errors if schema validation failed | ```python theme={null} parsed = session.parse_response(response) # Validate structured output try: result = MySchema.model_validate_json(parsed.candidates[0].content[0].text) validation_errors = None except ValidationError as e: validation_errors = [str(err) for err in e.errors()] result = None event = session.create_llm_event_from_parsed_response( parsed_response=parsed, validation_errors=validation_errors ) await client.log_telemetry_event(event) ``` *** ## Runtime Message Management Add messages to the session at runtime for multi-turn conversations. ### append\_user\_text Append a user message with text content. ```python theme={null} def append_user_text( text: str, name: str = "", description: str = "", ) -> None ``` ```python theme={null} session.append_user_text("What about the weather tomorrow?") ``` ### append\_assistant\_text Append an assistant message with text content. ```python theme={null} def append_assistant_text( text: str, name: str = "", description: str = "", ) -> None ``` ```python theme={null} session.append_assistant_text("The weather will be sunny.") ``` ### append\_assistant\_response Append an assistant response from a parsed LLM response. ```python theme={null} def append_assistant_response( parsed_response: ParsedResponse, candidate_idx: int = 0, name: str = "", description: str = "", ) -> None ``` This is the preferred way to add LLM responses for multi-turn conversations: ```python theme={null} # First turn response = anthropic.messages.create(**session.to_anthropic_invocation()) parsed = session.parse_response(response) session.append_assistant_response(parsed) # Second turn session.append_user_text("Tell me more") response = anthropic.messages.create(**session.to_anthropic_invocation()) ``` *** ## Context Handling The session automatically handles context from `session_data`: 1. If `session_data` is provided, `render()` is called to get variables 2. These variables are used for substitution in message templates 3. Additional `context` parameters are merged (taking precedence) ```python theme={null} # session_data provides base variables session = await client.create_prompt_session( prompt_id="prompt-id", session_data=QueryInput(query="Hello", user="Alice") ) # Additional context overrides session_data payload = session.to_anthropic_invocation( context={"user": "Bob"} # Overrides session_data.user ) ``` # Types Reference Source: https://moxn.mintlify.app/reference/types Key types used throughout the Moxn SDK This page documents the key types you'll encounter when using the Moxn SDK. ## Provider Enum representing supported LLM providers. ```python theme={null} from moxn.types.content import Provider class Provider(Enum): ANTHROPIC = "anthropic" OPENAI_CHAT = "openai_chat" OPENAI_RESPONSES = "openai_responses" GOOGLE_GEMINI = "google_gemini" GOOGLE_VERTEX = "google_vertex" ``` **Usage:** ```python theme={null} await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) ``` *** ## RenderableModel Protocol for session data models generated by codegen. ```python theme={null} from moxn.types.base import RenderableModel @runtime_checkable class RenderableModel(Protocol): moxn_schema_metadata: ClassVar[MoxnSchemaMetadata] def model_dump(self, ...) -> Any: ... def render(self, **kwargs: Any) -> Any: ... ``` Generated models implement this protocol: ```python theme={null} class QueryInput(BaseModel): """Generated by Moxn codegen.""" moxn_schema_metadata: ClassVar[MoxnSchemaMetadata] = MoxnSchemaMetadata( schema_id=UUID("..."), prompt_id=UUID("..."), task_id=UUID("...") ) query: str context: str | None = None def render(self, **kwargs) -> dict[str, str]: return { "query": self.query, "context": self.context or "" } ``` The `render()` method transforms typed data into a flat `dict[str, str]` for variable substitution. *** ## PromptTemplate A prompt template fetched from the Moxn API. ```python theme={null} class PromptTemplate: id: UUID # Stable anchor ID name: str # Prompt name description: str | None # Optional description task_id: UUID # Parent task ID messages: list[Message] # Ordered messages input_schema: Schema | None # Auto-generated input schema completion_config: CompletionConfig | None # Model settings tools: list[SdkTool] | None # Tools and structured outputs branch_id: UUID | None # Branch (if branch access) commit_id: UUID | None # Commit (if commit access) ``` **Key Properties:** | Property | Type | Description | | -------------------------- | -------------------------- | ------------------------------------- | | `id` | `UUID` | Stable anchor ID that never changes | | `name` | `str` | Human-readable prompt name | | `messages` | `list[Message]` | The message sequence | | `input_schema` | `Schema \| None` | Auto-generated from variables | | `completion_config` | `CompletionConfig \| None` | Model and parameter settings | | `function_tools` | `list[SdkTool]` | Tools configured for function calling | | `structured_output_schema` | `SdkTool \| None` | Schema for structured output | *** ## Task A task containing prompts and schemas. ```python theme={null} class Task: id: UUID # Stable anchor ID name: str # Task name description: str | None # Optional description prompts: list[PromptTemplate] # All prompts in task definitions: dict[str, Any] # Schema definitions branches: list[Branch] # All branches last_commit: Commit | None # Latest commit info branch_id: UUID | None # Current branch commit_id: UUID | None # Current commit ``` *** ## Message A message within a prompt. ```python theme={null} class Message: id: UUID # Stable anchor ID name: str # Message name description: str | None # Optional description role: MessageRole # system, user, assistant author: Author # HUMAN or MACHINE blocks: list[list[ContentBlock]] # 2D array of content blocks task_id: UUID # Parent task ID ``` **Roles:** ```python theme={null} class MessageRole(str, Enum): SYSTEM = "system" USER = "user" ASSISTANT = "assistant" ``` *** ## ParsedResponse Normalized LLM response from any provider. ```python theme={null} class ParsedResponse: provider: Provider # Which provider candidates: list[ParsedResponseCandidate] # Response candidates stop_reason: StopReason # Why generation stopped usage: TokenUsage # Token counts model: str | None # Model used raw_response: dict # Original response ``` ### ParsedResponseCandidate A single response candidate. ```python theme={null} class ParsedResponseCandidate: content_blocks: list[TextContent | ToolCall | ThinkingContent | ReasoningContent] metadata: ResponseMetadata ``` Content blocks preserve order, which is important for interleaved thinking/text/tool sequences. ### Content Block Types ```python theme={null} class TextContent(BaseModel): text: str class ToolCall(BaseModel): id: str name: str arguments: dict[str, Any] | str | None class ThinkingContent(BaseModel): thinking: str # For Claude extended thinking class ReasoningContent(BaseModel): summary: str # For OpenAI o1/o3 reasoning ``` ### StopReason ```python theme={null} class StopReason(str, Enum): END_TURN = "end_turn" MAX_TOKENS = "max_tokens" TOOL_CALL = "tool_call" CONTENT_FILTER = "content_filter" ERROR = "error" OTHER = "other" ``` ### TokenUsage ```python theme={null} class TokenUsage(BaseModel): input_tokens: int | None = None completion_tokens: int | None = None thinking_tokens: int | None = None # For extended thinking models ``` *** ## LLMEvent Event logged to telemetry for LLM interactions. ```python theme={null} class LLMEvent: promptId: UUID promptName: str taskId: UUID branchId: UUID | None commitId: UUID | None messages: list[Message] # Messages sent provider: Provider rawResponse: dict # Original response parsedResponse: ParsedResponse # Normalized response sessionData: RenderableModel | None # Input data (typed) renderedInput: dict[str, str] | None # Rendered variables (flat) attributes: dict[str, Any] | None # Custom attributes isUncommitted: bool # Whether from uncommitted state responseType: ResponseType # Classification validationErrors: list[str] | None # Schema validation errors ``` ### ResponseType Classification of the response for UI rendering: ```python theme={null} class ResponseType(str, Enum): TEXT = "text" TOOL_CALLS = "tool_calls" TEXT_WITH_TOOLS = "text_with_tools" STRUCTURED = "structured" STRUCTURED_WITH_TOOLS = "structured_with_tools" THINKING = "thinking" TEXT_WITH_THINKING = "text_with_thinking" THINKING_WITH_TOOLS = "thinking_with_tools" ``` *** ## Span Types ### Span An active span for tracing. ```python theme={null} class Span: context: SpanContext # Context for propagation def set_attribute(self, key: str, value: Any) -> None: """Add searchable metadata to the span.""" ``` ### SpanContext Context that can be passed to child spans. ```python theme={null} class SpanContext: trace_id: str span_id: str ``` ### MoxnTraceCarrier Carrier for propagating trace context across services. ```python theme={null} class MoxnTraceCarrier(BaseModel): traceparent: str # W3C trace context tracestate: str | None moxn_metadata: dict # Moxn-specific context ``` **Usage for distributed tracing:** ```python theme={null} # Extract from current span carrier = client.extract_context() # Send to another service await queue.put({"carrier": carrier.model_dump(mode="json"), "data": ...}) # In the receiving service carrier = MoxnTraceCarrier.model_validate(message["carrier"]) async with client.span_from_carrier(carrier) as span: await process(message["data"]) ``` *** ## Version Types ### VersionRef Reference to a specific version (branch or commit). ```python theme={null} class VersionRef(BaseModel): branch_name: str | None = None commit_id: str | None = None ``` Exactly one of `branch_name` or `commit_id` must be provided. ### BranchHeadResponse Response from `get_branch_head()`. ```python theme={null} class BranchHeadResponse(BaseModel): branch_id: str branch_name: str task_id: UUID head_commit_id: str | None effective_commit_id: str # The commit to use has_uncommitted_changes: bool last_committed_at: datetime | None is_default: bool ``` ### Branch A branch reference. ```python theme={null} class Branch(BaseModel): id: UUID name: str head_commit_id: UUID | None ``` ### Commit A commit snapshot. ```python theme={null} class Commit(BaseModel): id: str # Commit SHA message: str created_at: datetime | None ``` *** ## Schema Types ### MoxnSchemaMetadata Metadata embedded in JSON schemas. ```python theme={null} class MoxnSchemaMetadata(BaseModel): schema_id: UUID schema_version_id: UUID | None prompt_id: UUID | None # None for task-level schemas prompt_version_id: UUID | None task_id: UUID branch_id: UUID | None commit_id: str | None ``` This metadata is included in the `x-moxn-metadata` field of exported JSON schemas and in generated Pydantic models. # Logging Events Source: https://moxn.mintlify.app/telemetry/logging Log LLM interactions with full context Every LLM call should be logged for debugging, analysis, and compliance. This guide covers how to log telemetry events with Moxn. ## Basic Logging The simplest way to log an LLM call: ```python theme={null} async with client.span(session) as span: response = anthropic.messages.create( **session.to_anthropic_invocation() ) # Log with provider type await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) ``` This logs: * The complete prompt (all messages) * Your session data and rendered input * The raw LLM response * Token counts and model info * Span context for tracing ## What Gets Logged Each telemetry event captures: ### Session Data Your original typed input: ```python theme={null} { "query": "How do I reset my password?", "customer_name": "Alice", "documents": [...] # Original Pydantic objects } ``` ### Rendered Input The flattened strings injected into the prompt: ```python theme={null} { "query": "How do I reset my password?", "customer_name": "Alice", "documents": "[{\"title\": \"FAQ\", ...}]" # Serialized } ``` ### Messages The complete prompt sent to the LLM: ```python theme={null} [ {"role": "system", "content": "You are a helpful assistant..."}, {"role": "user", "content": "Customer Alice asks: How do I..."} ] ``` ### Response The raw LLM response plus parsed content: ```python theme={null} { "raw_response": {...}, # Original provider response "parsed_response": { "candidates": [...], "input_tokens": 150, "output_tokens": 200, "model": "claude-sonnet-4-20250514", "stop_reason": "end_turn" } } ``` ### Metadata Context about the call: ```python theme={null} { "prompt_id": "uuid", "prompt_name": "Product Help", "task_id": "uuid", "branch_id": "uuid", # If branch access "commit_id": "abc123", # If commit access "provider": "anthropic", "is_uncommitted": false } ``` ## Logging Methods ### log\_telemetry\_event\_from\_response() The recommended method—handles parsing automatically: ```python theme={null} # Anthropic await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) # OpenAI await client.log_telemetry_event_from_response( session, response, Provider.OPENAI_CHAT ) # Google await client.log_telemetry_event_from_response( session, response, Provider.GOOGLE_GEMINI ) ``` ### log\_telemetry\_event() For manual event creation with more control: ```python theme={null} # Create event manually event = session.create_llm_event_from_response( response=response, provider=Provider.ANTHROPIC ) # Or from parsed response with extra data parsed = session.parse_response(response) event = session.create_llm_event_from_parsed_response( parsed_response=parsed, request_config=config, # Optional schema_definition=schema, # Optional attributes={"custom": "data"}, # Optional validation_errors=["field missing"] # Optional ) # Log it await client.log_telemetry_event(event) ``` ## LLMEvent Structure The `LLMEvent` contains all logged data: ```python theme={null} event = session.create_llm_event_from_response(response, Provider.ANTHROPIC) # Prompt context event.promptId # UUID event.promptName # str event.taskId # UUID event.branchId # UUID | None event.commitId # UUID | None event.isUncommitted # bool # Input event.messages # list[Message] - the prompt event.sessionData # RenderableModel | None event.renderedInput # dict[str, str] | None # Output event.provider # Provider enum event.rawResponse # dict event.parsedResponse # ParsedResponse # Enhanced telemetry event.responseType # str - "text", "tool_call", etc. event.requestConfig # RequestConfig | None event.schemaDefinition # SchemaDefinition | None event.toolCallsCount # int event.validationErrors # list[str] | None # Custom data event.attributes # dict | None ``` ## Custom Attributes Add custom data to events by setting metadata when creating the span: ```python theme={null} # Set metadata at span creation (preferred) async with client.span( session, metadata={ "customer_id": "123", "query_type": "password_reset", "customer_tier": "premium", "ab_test_variant": "B" } ) as span: response = await call_llm() await client.log_telemetry_event_from_response(...) ``` This metadata is captured with all telemetry events logged within the span. For event-specific attributes, use `create_llm_event_from_parsed_response`: ```python theme={null} event = session.create_llm_event_from_parsed_response( parsed_response=parsed, attributes={ "validation_passed": True, "response_category": "helpful" } ) ``` ## Validation Logging Log validation results for structured outputs: ```python theme={null} from pydantic import ValidationError response = anthropic.messages.create( **session.to_anthropic_invocation() ) parsed = session.parse_response(response) # Attempt to validate structured output validation_errors = [] try: result = YourOutputModel.model_validate_json( parsed.candidates[0].content[0].text ) except ValidationError as e: validation_errors = [str(err) for err in e.errors()] # Log with validation status event = session.create_llm_event_from_parsed_response( parsed_response=parsed, validation_errors=validation_errors if validation_errors else None ) await client.log_telemetry_event(event) ``` ## Event Types Events are categorized by type: | Type | Description | | ------------------- | ---------------------------- | | `text` | Standard text response | | `tool_call` | Response includes tool calls | | `structured_output` | JSON structured output | | `thinking` | Extended thinking response | | `mixed` | Multiple content types | The SDK detects the type automatically: ```python theme={null} event = session.create_llm_event_from_response(response, Provider.ANTHROPIC) print(event.responseType) # "text", "tool_call", etc. ``` ## Logging Without Spans You can log events without a span context, but it's not recommended: ```python theme={null} # Works but loses trace hierarchy response = anthropic.messages.create(...) await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) ``` The event will still be logged, but won't be part of a trace hierarchy. ## Batch Processing For batch operations, log each item individually: ```python theme={null} async with client.span(session, name="batch_process") as root_span: for i, item in enumerate(items): async with client.span( session, name=f"process_item_{i}", metadata={"item_id": item.id} ) as span: response = await process_item(item) await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) ``` ## Error Logging Spans automatically capture errors when exceptions are raised: ```python theme={null} async with client.span( session, metadata={"operation": "llm_call"} ) as span: try: response = anthropic.messages.create( **session.to_anthropic_invocation() ) await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) except anthropic.RateLimitError as e: # The span automatically captures error.type and error.message # when the exception propagates raise ``` ## Token Tracking Token counts are extracted automatically: ```python theme={null} event = session.create_llm_event_from_response(response, Provider.ANTHROPIC) print(event.parsedResponse.input_tokens) # Prompt tokens print(event.parsedResponse.output_tokens) # Completion tokens ``` These appear in the web app for cost analysis. ## Complete Example ```python theme={null} from moxn import MoxnClient from moxn.types.content import Provider from anthropic import Anthropic from pydantic import ValidationError async def analyze_with_logging(query: str): async with MoxnClient() as client: session = await client.create_prompt_session( prompt_id="analysis-prompt", session_data=AnalysisInput(query=query) ) # Set all known metadata at span creation async with client.span( session, name="structured_analysis", metadata={ "query_length": len(query), "query_category": classify_query(query) } ) as span: # Make the LLM call anthropic = Anthropic() response = anthropic.messages.create( **session.to_anthropic_invocation() ) # Parse response (uses stored provider from completion_config) parsed = session.parse_response(response) # Validate structured output validation_errors = [] try: result = AnalysisOutput.model_validate_json( parsed.candidates[0].content[0].text ) except ValidationError as e: validation_errors = [str(err) for err in e.errors()] result = None # Log the complete event with validation status event = session.create_llm_event_from_parsed_response( parsed_response=parsed, validation_errors=validation_errors or None, attributes={ "output_valid": result is not None, "result_confidence": result.confidence if result else None } ) await client.log_telemetry_event(event) return result ``` ## Next Steps View logs in the web app Create trace hierarchies Event creation methods See logging in context # Reviewing Telemetry Source: https://moxn.mintlify.app/telemetry/reviewing View and analyze traces in the Moxn web app After logging telemetry, you can review it in the Moxn web app. This guide shows you how to find and analyze your traces. ## Accessing Traces Navigate to your task in the Moxn web app and open the **Traces** tab. You'll see a list of all traces for that task, showing: * Timestamp * Prompt name * Duration * Token count * Status ## Traces Tab Traces list view The Traces tab shows all executions for your task with filtering controls at the top. ## Trace List View The trace list provides a high-level overview: | Column | Description | | ------------ | --------------------------------------- | | **Time** | When the trace started | | **Prompt** | Which prompt was used | | **Duration** | Total time for the trace | | **Tokens** | Input + output tokens | | **Cost** | Estimated cost (based on model pricing) | | **Status** | Success, error, or warning | ### Filtering Filter traces by: * **Date range**: Today, last 7 days, custom range * **Prompt**: Filter to specific prompts * **Status**: Success, error * **Branch/Commit**: See traces from specific versions ### Sorting Sort by: * Newest/oldest * Duration (slowest first) * Token count (highest first) * Cost (highest first) ## Trace Detail View Click a trace to see the full details: Trace detail with span hierarchy ### Trace Header The header shows: * Trace name * Summary stats (completions, tool calls, token counts) * Show details button ### Span Hierarchy See the tree structure of spans: * **customer\_support\_request** (root) - 2.5s * classify\_query - 0.8s * search\_documents - 0.3s * generate\_response - 1.4s * LLM Call Click any span to see its details. ### Span Details For each span, you can see: **Timing** * Start time * Duration * Percentage of total trace time **Attributes** * Custom metadata you added * System attributes (prompt\_id, task\_id, etc.) **Events** * LLM calls made within the span * Token counts per event * Response types ## Span Detail Modal Click any span to view detailed information: Span detail modal ### Modal Tabs | Tab | Content | | ----------------------- | -------------------------------------------- | | **Conversation Flow** | Visual message sequence with role indicators | | **Variables** | Input variable values used in this call | | **Metrics** | Latency, token usage, estimated costs | | **Raw Message Content** | Full message content | | **Raw Data** | Complete span data as JSON | ### Navigation * **Previous/Next**: Navigate between spans * **Keyboard shortcuts**: Arrow keys, J/K, Esc to close * **Create Observation**: Save span for test cases ## LLM Event Details Click an LLM event to see the complete interaction: ### Input Tab **Session Data**: Your original typed input ```json theme={null} { "query": "How do I reset my password?", "customer_name": "Alice", "documents": [ {"title": "FAQ", "content": "..."} ] } ``` **Rendered Input**: The flattened values used for substitution ```json theme={null} { "query": "How do I reset my password?", "customer_name": "Alice", "documents": "[{\"title\": \"FAQ\", ...}]" } ``` **Messages**: The complete prompt sent to the LLM Shows each message with: * Role (system/user/assistant) * Content (with variables substituted) * Any images or files included ### Output Tab **Response Content**: What the LLM returned For text responses: ``` To reset your password, follow these steps: 1. Go to the login page... ``` For tool calls: ```json theme={null} { "tool": "search_knowledge_base", "input": {"query": "password reset"} } ``` For structured output: ```json theme={null} { "category": "account", "subcategory": "password", "confidence": 0.95 } ``` **Raw Response**: The complete provider response (expandable) ### Metrics Tab * **Model**: Which model was used * **Provider**: Anthropic, OpenAI, etc. * **Input tokens**: Prompt token count * **Output tokens**: Completion token count * **Total tokens**: Combined count * **Estimated cost**: Based on model pricing * **Latency**: Time to first token, total time * **Stop reason**: Why the model stopped ### Version Tab * **Prompt ID**: UUID of the prompt * **Prompt name**: Human-readable name * **Branch**: If fetched by branch * **Commit**: If fetched by commit * **Uncommitted**: Whether working state was used ## Use Cases ### Debugging Issues When something goes wrong: 1. Filter to the timeframe when the issue occurred 2. Find traces with errors 3. Click to see the full input/output 4. Check if: * Input data was correct * Prompt content was expected * Response was malformed ### Performance Analysis To identify slow traces: 1. Sort by duration (slowest first) 2. Look for patterns: * Long input (too many tokens?) * Slow model (use a faster one?) * Sequential calls (could parallelize?) 3. Check span hierarchy for bottlenecks ### Cost Optimization To reduce costs: 1. Sort by cost (highest first) 2. Identify expensive prompts 3. Look for: * Unnecessarily long context * Verbose system prompts * Large documents that could be summarized ### A/B Testing To compare versions: 1. Run both versions and log with different metadata 2. Filter by your A/B test attribute 3. Compare: * Success rates * Average latency * Output quality (manual review) ## Exporting Data Export trace data for external analysis: * **CSV**: Basic metrics * **JSON**: Full trace data Use exports for: * Building dashboards * Long-term storage * Compliance records ## Best Practices Use custom attributes to make traces searchable: ```python theme={null} metadata={"customer_id": "123", "feature": "password_reset"} ``` Use names that describe what the span does: ```python theme={null} name="classify_customer_query" # Good name="step_1" # Bad ``` Check traces periodically, not just when issues arise. Use exports to build alerts for: * Error rate spikes * Latency increases * Cost anomalies ## Next Steps Create better trace hierarchies Log more detailed events See complex traces Create prompts to trace # Spans & Tracing Source: https://moxn.mintlify.app/telemetry/spans Observable traces for LLM workflows Moxn provides W3C Trace Context compatible spans for full observability of your LLM workflows. This guide covers how to create spans and propagate trace context. ## Why Spans? Spans give you: * **Visibility**: See exactly what happened during an LLM call * **Debugging**: Trace issues back to specific invocations * **Analytics**: Measure latency, token usage, and costs * **Correlation**: Link related LLM calls in complex workflows ## Basic Span Usage Wrap LLM calls in spans to capture telemetry: ```python theme={null} from moxn import MoxnClient from moxn.types.content import Provider from anthropic import Anthropic async with MoxnClient() as client: session = await client.create_prompt_session( prompt_id="...", session_data=your_input ) # Create a span for this LLM call async with client.span(session) as span: anthropic = Anthropic() response = anthropic.messages.create( **session.to_anthropic_invocation() ) # Log the event within the span await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) ``` ## Span Parameters ### Basic Parameters ```python theme={null} async with client.span( session, name="analyze_query", # Custom span name (defaults to prompt name) metadata={"key": "value"} # Searchable attributes ) as span: ... ``` ### Full Signature ```python theme={null} async with client.span( prompt_session: PromptSession, name: str | None = None, metadata: dict[str, Any] | None = None, *, parent_context: SpanContext | None = None, # For async patterns trace_context: TraceContext | None = None # For distributed tracing ) as span: ... ``` ## Span Properties Access span information within the context: ```python theme={null} async with client.span( session, metadata={ "user_id": "user_123", "query_type": "product_question" } ) as span: span.span_id # str - unique span identifier span.context.trace_id # str - trace identifier span.name # str - span name span.parent_span_id # str | None - parent span (if nested) span.start_time # datetime span.attributes # dict - custom attributes (from metadata) ``` ## Parent-Child Spans Create hierarchical traces for complex workflows: ```python theme={null} async with client.span(session, name="handle_request") as root_span: # First child span async with client.span(session, name="classify_query") as classify_span: classification = await classify(query) await client.log_telemetry_event_from_response(...) # Second child span async with client.span(session, name="generate_response") as response_span: response = await generate(query, classification) await client.log_telemetry_event_from_response(...) ``` This creates a trace hierarchy: * **handle\_request** (root) * classify\_query (child) * generate\_response (child) ## Parallel Spans For concurrent operations, pass parent context explicitly: ```python theme={null} import asyncio async with client.span(session, name="parallel_analysis") as root_span: # Extract parent context for parallel tasks root_context = root_span.context async def analyze_sentiment(): async with client.span( session, name="sentiment_analysis", parent_context=root_context # Explicit parent ) as span: response = await call_llm_for_sentiment() await client.log_telemetry_event_from_response(...) return response async def analyze_entities(): async with client.span( session, name="entity_extraction", parent_context=root_context # Same parent ) as span: response = await call_llm_for_entities() await client.log_telemetry_event_from_response(...) return response # Run in parallel sentiment, entities = await asyncio.gather( analyze_sentiment(), analyze_entities() ) ``` Result: * **parallel\_analysis** (root) * sentiment\_analysis (parallel child) * entity\_extraction (parallel child) ## Distributed Tracing Propagate traces across services using carriers: ### Extract Context ```python theme={null} async with client.span(session, name="api_handler") as span: # Extract context for propagation carrier = client.extract_context() if carrier: # Send to another service via queue, HTTP, etc. await queue.put({ "carrier": carrier.model_dump(mode="json"), "payload": data }) ``` ### Resume from Carrier In another service or worker: ```python theme={null} from moxn.types.telemetry import MoxnTraceCarrier # Receive the carrier message = await queue.get() carrier = MoxnTraceCarrier.model_validate(message["carrier"]) # Create a span that continues the trace async with client.span_from_carrier( carrier, name="process_async_task" ) as span: # Process the work result = await process(message["payload"]) await client.log_telemetry_event(...) ``` ### Carrier Contents ```python theme={null} carrier = client.extract_context() carrier.trace_id # str - W3C trace ID carrier.span_id # str - Parent span ID carrier.prompt_id # UUID - Source prompt carrier.prompt_name # str carrier.task_id # UUID carrier.commit_id # UUID | None carrier.branch_id # UUID | None ``` ## W3C Trace Context Moxn spans are W3C Trace Context compatible: ```python theme={null} # Extract W3C headers for HTTP propagation async with client.span(session) as span: headers = { "traceparent": f"00-{span.context.trace_id}-{span.span_id}-01" } await http_client.post(url, headers=headers, json=data) ``` ### Incoming HTTP Requests Resume traces from incoming HTTP: ```python theme={null} from moxn.types.telemetry import TraceContext # Parse incoming traceparent header traceparent = request.headers.get("traceparent") if traceparent: parts = traceparent.split("-") trace_context = TraceContext( trace_id=parts[1], span_id=parts[2] ) async with client.span( session, trace_context=trace_context # Continue existing trace ) as span: ... ``` ## Adding Metadata Add searchable metadata to spans by passing it in the `metadata` parameter at span creation: ```python theme={null} async with client.span( session, metadata={ "customer_id": "cust_123", "request_id": "req_456", "environment": "production", "query_type": "product_question", "document_count": len(documents) } ) as span: response = await call_llm() # Metadata is captured with all telemetry events in this span ``` This is the preferred pattern—define all known metadata upfront when creating the span context. ## Span Events Within a span, you can log multiple events: ```python theme={null} async with client.span(session, name="multi_step_workflow") as span: # First LLM call response1 = await call_llm_1() await client.log_telemetry_event_from_response( session, response1, Provider.ANTHROPIC ) # Process result processed = process(response1) # Second LLM call response2 = await call_llm_2(processed) await client.log_telemetry_event_from_response( session, response2, Provider.ANTHROPIC ) ``` Both events are associated with the same span. ## Error Handling Spans capture errors automatically. Exceptions are recorded on the span when raised: ```python theme={null} async with client.span( session, metadata={"operation": "llm_call"} ) as span: try: response = await call_llm() await client.log_telemetry_event_from_response(...) except Exception as e: # The span automatically records exception details # (error.type and error.message are captured) raise ``` ## Flushing Telemetry Ensure all telemetry is sent before shutdown: ```python theme={null} async with MoxnClient() as client: # Your code... # Explicit flush with timeout (optional) await client.flush(timeout=5.0) # Context manager automatically flushes on exit ``` For serverless or short-lived processes: ```python theme={null} async def lambda_handler(event, context): async with MoxnClient() as client: session = await client.create_prompt_session(...) async with client.span(session) as span: response = await call_llm() await client.log_telemetry_event_from_response(...) # Ensure telemetry is sent before Lambda returns await client.flush(timeout=3.0) return {"statusCode": 200} ``` ## Complete Example ```python theme={null} from moxn import MoxnClient from moxn.types.content import Provider from anthropic import Anthropic import asyncio async def handle_customer_query(query: str, customer_id: str): async with MoxnClient() as client: session = await client.create_prompt_session( prompt_id="product-help-prompt", branch_name="main", session_data=ProductHelpInput(query=query) ) async with client.span( session, name="customer_support_request", metadata={ "customer_id": customer_id, "query_length": len(query) } ) as root_span: # Step 1: Classify the query classification = await classify_query(query) # Step 2: Search for relevant docs docs = await search_knowledge_base(query) # Step 3: Generate response with all context in metadata async with client.span( session, name="generate", metadata={ "classification": classification, "doc_count": len(docs) } ) as span: anthropic = Anthropic() response = anthropic.messages.create( **session.to_anthropic_invocation() ) await client.log_telemetry_event_from_response( session, response, Provider.ANTHROPIC ) return response.content[0].text asyncio.run(handle_customer_query("How do I reset my password?", "cust_123")) ``` ## Next Steps Learn about event types and logging View traces in the web app See spans in a complex workflow Full API documentation # Part 2: Models and Context Preparation Source: https://moxn.mintlify.app/videos/models Video walkthrough of models and context preparation in Moxn